Abstract

Here we propose a robust silicon modulator that seamlessly generates phase shift keyed data. The modulator has very low insertion loss and is robust against electrical amplitude variations in the modulating signal; specifically a 50%-200% variation in modulating amplitude leads to only a π/9 variation in output optical phase, corresponding to only ± 10% variation in the differentially detected signal. This yields a ~2.5dB enhancement in SNR over OOK (on-off-keying) formats.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
    [CrossRef]
  2. D. Miller, “Device requirements for optical interconnects to Silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
    [CrossRef]
  3. C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron.10(2), 281–293 (2004).
    [CrossRef]
  4. L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a Silicon microring switch,” IEEE Photon. Technol. Lett.24(6), 473–475 (2012).
    [CrossRef]
  5. Y. Ding, J. Xu, C. Peucheret, M. Pu, L. Liu, J. Seoane, H. Ou, X. Zhang, and D. Huang, “Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single Silicon microring resonator,” J. Lightwave Technol.29(5), 677–684 (2011).
    [CrossRef]
  6. R. Kou, K. Yamada, H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “DPSK demodulation with a single Silicon photonic nanowire waveguide,” in 8th IEEE International Conference on Group IV Photonics (GFP), (2011), pp. 323–325.
  7. L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15(18), 11564–11569 (2007).
    [CrossRef] [PubMed]
  8. P. Dong, C. Xie, L. Chen, N. K. Fontaine, and Y. K. Chen, “Experimental demonstration of microring quadrature phase-shift keying modulators,” Opt. Lett.37(7), 1178–1180 (2012).
    [CrossRef] [PubMed]
  9. J. Lloret, R. Kumar, S. Sales, F. Ramos, G. Morthier, P. Mechet, T. Spuesens, D. V. Thourhout, N. Olivier, J. Fédéli, and J. Capmany, “Ultra-compact electro-optic phase modulator based on III-V-on-Silicon microdisk resonator,” Opt. Lett.37(12), 2379–2381 (2012).
  10. K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of DPSK at 5 Gb/s using a Silicon microring modulator,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.12.LeSaleve.2.
  11. G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optical guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
    [CrossRef]
  12. R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  13. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale Silicon electro-optic modulators,” Opt. Lett.33(19), 2185–2187 (2008).
    [CrossRef] [PubMed]
  14. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (2009), paper CPDB10.
  15. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based Silicon micro-ring Silicon modulators,” Opt. Express15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  16. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in Silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
    [CrossRef] [PubMed]
  17. A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using Silicon microring modulators,” Opt. Express18(15), 15544–15552 (2010).
    [CrossRef] [PubMed]

2012 (3)

2011 (1)

2010 (1)

2009 (1)

D. Miller, “Device requirements for optical interconnects to Silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

2008 (2)

2007 (2)

2006 (1)

2004 (1)

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron.10(2), 281–293 (2004).
[CrossRef]

1995 (1)

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optical guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Apsel, A. B.

Armenise, M. N.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optical guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Barbarossa, G.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optical guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Beausoleil, R. G.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Bergman, K.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a Silicon microring switch,” IEEE Photon. Technol. Lett.24(6), 473–475 (2012).
[CrossRef]

A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using Silicon microring modulators,” Opt. Express18(15), 15544–15552 (2010).
[CrossRef] [PubMed]

A. Shacham, K. Bergman, and L. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Biberman, A.

Capmany, J.

Carloni, L.

A. Shacham, K. Bergman, and L. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Chan, J.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a Silicon microring switch,” IEEE Photon. Technol. Lett.24(6), 473–475 (2012).
[CrossRef]

Chen, L.

Chen, Y. K.

Ding, Y.

Dokania, R. K.

Dong, P.

Fédéli, J.

Fontaine, N. K.

Foster, M. A.

Gaeta, A. L.

Huang, D.

Kumar, R.

Li, Q.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a Silicon microring switch,” IEEE Photon. Technol. Lett.24(6), 473–475 (2012).
[CrossRef]

Li, Y.

Lipson, M.

Lira, H. L. R.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a Silicon microring switch,” IEEE Photon. Technol. Lett.24(6), 473–475 (2012).
[CrossRef]

Liu, L.

Liu, X.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron.10(2), 281–293 (2004).
[CrossRef]

Lloret, J.

Manipatruni, S.

Manolatou, C.

Matteo, A. M.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optical guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Mechet, P.

Miller, D.

D. Miller, “Device requirements for optical interconnects to Silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Morthier, G.

Olivier, N.

Ophir, N.

Ou, H.

Peucheret, C.

Poitras, C. B.

Pu, M.

Ramos, F.

Sales, S.

Schmidt, B.

Schmidt, B. S.

Seoane, J.

Shacham, A.

A. Shacham, K. Bergman, and L. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Shakya, J.

Sharping, J. E.

Sherwood-Droz, N.

Song, M.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Spuesens, T.

Thourhout, D. V.

Turner, A. C.

Wei, X.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron.10(2), 281–293 (2004).
[CrossRef]

Willner, A. E.

Xie, C.

Xu, C.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron.10(2), 281–293 (2004).
[CrossRef]

Xu, J.

Xu, L.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a Silicon microring switch,” IEEE Photon. Technol. Lett.24(6), 473–475 (2012).
[CrossRef]

Xu, Q.

Yang, J. Y.

Zhang, B.

Zhang, L.

Zhang, W.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a Silicon microring switch,” IEEE Photon. Technol. Lett.24(6), 473–475 (2012).
[CrossRef]

Zhang, X.

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron.10(2), 281–293 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a Silicon microring switch,” IEEE Photon. Technol. Lett.24(6), 473–475 (2012).
[CrossRef]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

J. Lightwave Technol. (2)

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optical guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Y. Ding, J. Xu, C. Peucheret, M. Pu, L. Liu, J. Seoane, H. Ou, X. Zhang, and D. Huang, “Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single Silicon microring resonator,” J. Lightwave Technol.29(5), 677–684 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Proc. IEEE (1)

D. Miller, “Device requirements for optical interconnects to Silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Other (3)

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (2009), paper CPDB10.

R. Kou, K. Yamada, H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “DPSK demodulation with a single Silicon photonic nanowire waveguide,” in 8th IEEE International Conference on Group IV Photonics (GFP), (2011), pp. 323–325.

K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of DPSK at 5 Gb/s using a Silicon microring modulator,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.12.LeSaleve.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Singly coupled ring configuration. (b) Spectral amplitude response and (c) spectral phase response of the singly coupled ring. A π phase-shift can be induced by operating at two opposite points, with equal amplitude, on the resonance curve. (d) Dually coupled ring configuration. (e) Spectral amplitude response and (f) spectral phase response of the dually coupled ring.

Fig. 2
Fig. 2

(a) Ring resonator PSK modulator. (b) The ring’s wideband spectral amplitude response shows only one phase matched resonance (c) spectral amplitude and (d) phase response of the phase matched resonance.

Fig. 3
Fig. 3

(a) FDTD simulation of a narrowband off-resonance input. (b) FDTD simulation of a narrowband on-resonance input; note the normalized optical amplitude in the ring is actually much greater than 2.

Fig. 4
Fig. 4

(a) Forward Biased p-i-n junction current as a function of voltage for a 1ns, 200ps and 100ps rise time. (b) Refractive index change as a function of carrier density [11]. (c) The output phase of the proposed device as a function of waveguide index change. (d) The output phase of the proposed device as a function of voltage.

Fig. 5
Fig. 5

(a) Modulating voltage input (50-200% of optimal) with square wave and sine wave (~100ps rise) signals. (b) Average carrier concentration in the waveguide. (c) Optical output amplitude and (d) optical output phase of the proposed device. (e) Signal amplitude resulting from differential detection. Levels yield a 2.5db ± 0.2db output.

Fig. 6
Fig. 6

(a) Optical output amplitude of the PSK modulator. (b) Phase output with the two transitions highlighted (0 to pi; pi to 0) (c) Complex plane transition diagram.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Y through X = c 1 c 2 e ( α+jβ )2πR 1 c 1 c 2 e ( α+jβ )2πR
Y drop X = s 1 s 2 e ( α+jβ )πR 1 c 1 c 2 e ( α+jβ )2πR
Y 2 X 1 = ( c 1 c 2 e ( α+jβ ) l 1 s 1 s 2 e ( α+jβ ) l 2 + e ( α+jβ )( l 1 + l 2 + l 3 ) ) e jβ l 2 e ( α+jβ ) l 3 ( s 1 s 2 e ( α+jβ ) l 1 c 1 c 2 e ( α+jβ ) l 2 )1
β( l 1 + l 3 )=( 2π n g λ )( l 1 + l 3 )=Mπ
β( l 2 + l 3 )=( 2π n g λ )( l 2 + l 3 )=Mπ
y 1 (t)= c 1 x 1 (t)+ s 1 r 3 (t)
y 2 (t)= c 2 x 2 (t)+ s 2 r 1 (t)
x 2 (t)=exp( ( α+j 2π n g λ ) l 2 ) y 1 (t T 2 )
r 1 (t)=exp( ( α+dα+j 2π( n g +dn) λ ) l 1 )( s 1 x 1 (t T 1 )+ c 1 r 3 (t T 1 ) )
r 3 (t)=exp( ( α+dα+j 2π( n g +dn) λ ) l 3 )( s 2 x 2 (t T 3 )+ c 2 r 1 (t T 3 ) )

Metrics