Abstract

Using numerical simulations, the impact of nonlinear signal-noise interactions (NSNI) between the amplified spontaneous emission noise (ASE) and the information signal on polarization-multiplexed quadrature phase-shift keying (PM-QPSK) systems at 42.8 (112)-Gbit/s is investigated over dispersion-managed (DM) link. Both symbol-aligned and symbol-interleaved formats are considered and compared. We find that for symbol-aligned PM-QPSK systems, the impact of NSNI on system performance seems rather weak due to the strong inter-channel cross-polarization modulation (XPolM). However, when the symbol-interleaved format is used, in which the XPolM is suppressed significantly, the system performance is seriously degraded by NSNI, especially at low bit-rate. Results of 1000-km transmission employing standard single-mode fiber (SSMF) over DM link show that for 42.8-Gbit/s coherent PM-QPSK systems, the nonlinear threshold (NLT) will decrease from 5.8dBm to 0.6dBm due to the nonlinear signal-noise interactions when symbol-interleaved RZ format is used.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, X. Zhou, M.-F. Huang, D. Qian, P. N. Ji, T. Wang, and P. Magill, “400Gb/s (4 x 100Gb/s) orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040km SMF-28,” Opt. Express 17(20), 17928–17933 (2009).
    [CrossRef] [PubMed]
  2. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. B. Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, “Transmission of 16.4-bit/s capacity over 2550km using PDM QPSK modulation format and coherent receiver,” J. Lightwave Technol. 27(3), 153–157 (2009).
    [CrossRef]
  3. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [CrossRef]
  4. J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear fiber impairments mitigation of 40-Gbit/s polarization-multiplexed QPSK by digital processing in a coherent receiver,” J. Lightwave Technol. 26(1), 36–42 (2008).
    [CrossRef]
  5. C. Xie, “Interchannel nonlinearities in coherent polarization division-multiplexed quadrature-phase-shift-keying systems,” IEEE Photon. Technol. Lett. 21(5), 274–276 (2009).
    [CrossRef]
  6. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
    [CrossRef]
  7. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  8. Y.-H. Wang and I. Lyubomirsky, “Impact of DP-QPSK pulse shape in nonlinear 100G transmission,” J. Lightwave Technol. 28(18), 2750–2756 (2010).
    [CrossRef]
  9. A. Bononi, P. Serena and N. Rossi, “Modeling of signal-noise interactions in nonlinear fiber transmission with different modulation formats,” ECOC2009 (2009), paper 10.4.6.
  10. A. Bononi, P. Serena, N. Rossi, and D. Sperti, “Which is the dominant nonlinearity in long-haul PDM-QPSK coherent transmissions?,” ECOC2010 (2010), paper Th.10.E.1.
  11. P. Serena, A. Orlandini, and A. Bononi, “Parametric-gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise,” J. Lightwave Technol. 24(5), 2026–2037 (2006).
    [CrossRef]
  12. A. P. T. Lau and J. M. Kahn, “Signal design and detection in presence of nonlinear phase noise,” J. Lightwave Technol. 25(10), 3008–3016 (2007).
    [CrossRef]
  13. K.-P. Ho, “Probability density of nonlinear phase noise,” J. Opt. Soc. Am. B 20(9), 1875–1879 (2003).
    [CrossRef]
  14. A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol. 16(2), 73–85 (2010).
    [CrossRef]
  15. C. Xie, “Nonlinear polarization effects and mitigation in polarization-division-multiplexed coherent transmission systems,” Chin. Opt. Lett. 8(9), 844–851 (2010).
    [CrossRef]
  16. O. Vassilieva, T. Hoshida, J. C. Rasmussen, and T. Naito, “Symbol rate dependence of XPM-induced phase noise penalty on QPSK-based modulation format,” ECOC2008 (2008), paper We.1.E.4.
  17. M. N. Chughtai, M. Forzati, J. Mårtensson, and D. Rafique, “Influence of polarization state, baud rate and PMD on non-linear impairments in WDM systems with mixed PM (D)QPSK and OOK channels,” Opt. Express 20(7), 8155–8160 (2012).
    [CrossRef] [PubMed]
  18. H. Kim, “Nonlinear phase noise in phase-coded transmission,” OFC2005 (2005), paper OThO3.

2012 (1)

2010 (5)

Y.-H. Wang and I. Lyubomirsky, “Impact of DP-QPSK pulse shape in nonlinear 100G transmission,” J. Lightwave Technol. 28(18), 2750–2756 (2010).
[CrossRef]

C. Xie, “Nonlinear polarization effects and mitigation in polarization-division-multiplexed coherent transmission systems,” Chin. Opt. Lett. 8(9), 844–851 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol. 16(2), 73–85 (2010).
[CrossRef]

2009 (4)

2008 (1)

2007 (1)

2006 (1)

2003 (1)

Achouche, M.

Bigo, S.

Blache, F.

Bononi, A.

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol. 16(2), 73–85 (2010).
[CrossRef]

P. Serena, A. Orlandini, and A. Bononi, “Parametric-gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise,” J. Lightwave Technol. 24(5), 2026–2037 (2006).
[CrossRef]

Bosco, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Boutin, A.

Carena, A.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Charlet, G.

Chughtai, M. N.

Curri, V.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Dupuy, J.-Y.

Forghieri, F.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Forzati, M.

Freund, R.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Gavioli, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Ho, K.-P.

Huang, M.-F.

Ji, P. N.

Kahn, J. M.

Lau, A. P. T.

Lyubomirsky, I.

Magill, P.

Mardoyan, H.

Mårtensson, J.

Miot, V.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Molle, L.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Orlandini, A.

Pardo, O. B.

Poggiolini, P.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Qian, D.

Rafique, D.

Renaudier, J.

Rossi, N.

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol. 16(2), 73–85 (2010).
[CrossRef]

Salsi, M.

Savory, S. J.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

Serena, P.

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol. 16(2), 73–85 (2010).
[CrossRef]

P. Serena, A. Orlandini, and A. Bononi, “Parametric-gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise,” J. Lightwave Technol. 24(5), 2026–2037 (2006).
[CrossRef]

Torrengo, E.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

Tran, P.

Verluise, F.

Wang, T.

Wang, Y.-H.

Xie, C.

Yu, J.

Zhou, X.

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Xie, “Interchannel nonlinearities in coherent polarization division-multiplexed quadrature-phase-shift-keying systems,” IEEE Photon. Technol. Lett. 21(5), 274–276 (2009).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100Gb/s transmission over installed fiber with different dispersion maps,” IEEE Photon. Technol. Lett. 22(6), 371–373 (2010).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Fiber Technol. (1)

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol. 16(2), 73–85 (2010).
[CrossRef]

Other (4)

O. Vassilieva, T. Hoshida, J. C. Rasmussen, and T. Naito, “Symbol rate dependence of XPM-induced phase noise penalty on QPSK-based modulation format,” ECOC2008 (2008), paper We.1.E.4.

H. Kim, “Nonlinear phase noise in phase-coded transmission,” OFC2005 (2005), paper OThO3.

A. Bononi, P. Serena and N. Rossi, “Modeling of signal-noise interactions in nonlinear fiber transmission with different modulation formats,” ECOC2009 (2009), paper 10.4.6.

A. Bononi, P. Serena, N. Rossi, and D. Sperti, “Which is the dominant nonlinearity in long-haul PDM-QPSK coherent transmissions?,” ECOC2010 (2010), paper Th.10.E.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

System configurations in our simulations. (a)Transmission line; (b) block diagram of the PM-QPSK transmitter; (c) block diagram of the coherent receiver based on DSP technology.

Fig. 2
Fig. 2

Back-to-back receiver sensitivity for 42.8-Gbit/s and 112-Gbit/s WDM PM-QPSK systems.

Fig. 3
Fig. 3

OSNR penalty at BER = 10−3 after 1000-km transmission versus launch power per channel for the WDM 42.8-Gbit/s PM-QPSK coherent system with and without NSNI. (a) NRZ pulse; (b)50% duty cycle RZ pulse.

Fig. 4
Fig. 4

BER as a function of launch power per channel (or received OSNR) after 1000-km nonlinear transmission for 42.8-Gbit/s RZ-PM-QPSK systems. The noise figure of each inline EDFA is set to 7dB and the span loss A span is equal to 35dB.

Fig. 5
Fig. 5

OSNR penalty at BER = 10−3 after 1000-km transmission versus launch power per channel for a 42.8-Gbit/s symbol-aligned NRZ-PM-QPSK channel surrounded by eighteen 42.8-Gbit/s symbol-aligned NRZ-PM-QPSK or 21.4-Gbit/s NRZ-SP-QPSK channels. The results are given with and without NSNI. Solid dots: the tested channel surrounded by NRZ-PM-QPSK; hollow dots: the tested channel surrounded by NRZ-SP-QPSK.

Fig. 6
Fig. 6

Signal constellation diagram of X polarization after equalization and phase estimation for a 42.8-Gbit/s symbol-aligned NRZ-PM-QPSK channel after 1000-km nonlinear transmission at OSNR = 14dB. (a,b):surrounding channels are 21.4-Gbit/s NRZ-SP-QPSK(red dots); (c,d): surrounding channels are 42.8-Gbit/s NRZ-PM-QPSK(blue dots). The launch power per channel is same for all the WDM channels and set to + 3dBm.

Fig. 7
Fig. 7

OSNR penalty at BER = 10−3 after 1000-km transmission versus launch power per channel for the WDM 112-Gbit/s PM-QPSK coherent system with and without NSNI. (a) NRZ pulse; (b) 50% duty cycle RZ pulse.

Tables (3)

Tables Icon

Table 1 Required OSNR for the analyzed systems at BER = 10−3

Tables Icon

Table 2 NLT for the analyzed systems with and without NSNI at 42.8-Gbit/s

Tables Icon

Table 3 NLT for the analyzed systems with and without NSNI at 112-Gbit/s

Metrics