Abstract

In this work we show that structures consisting of a metal hole array (MHA) lying on top of a 2D photonic crystal (PhC) exhibit the extraordinary transmission effect. In contrast to single MHAs, the extraordinary transmission in such hybrid structures is due to the coupling of an incident wave to eigenmodes of the PhC. Thus, the spectral positions of the transmission peaks are defined by the spectral positions of the corresponding PhC eigenmodes. Our results provide a novel powerful tool to manipulate light on a subwavelength scale.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemy, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
  2. B. Hou, Z. Hong Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett.89, 131917 (2006).
  3. J. H. Kim and P. J. Moyer, “Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,” Opt. Express14, 6595–6603 (2006).
  4. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85, 4316–4318 (2004).
  5. L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express12, 3619–3628 (2004).
  6. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett.84, 2742–2744 (2004).
  7. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–44 (2007).
  8. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett.29, 2500–2502 (2004).
  9. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
  10. F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
  11. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009).
  12. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
  13. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B71, 235117 (2005).
  14. Y. Gou, Y. Xuan, and Y. Han, “Investigation of spectral properties of metal-insulator-metal film stack with rectangular hole arrays,” Int. J. Thermophys.32, 1060 (2011).
  15. V. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, “A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons,” J. Appl. Phys.105, 033505 (2009).
  16. H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express16, 7641–7648 (2008).
  17. S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).
  18. S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express16, 4797–4803 (2008).
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985)
  20. http://www.rsoftdesign.com/
  21. K. Sakoda, Optical properties of Photonic crystals (Springer-Verlag, Berlin, 2001) 57–62.
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light 2nd Ed., (Princeton University Press, 2008) p.242.
  23. A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photon. Nanostr. Fund. Appl.4, 141–145 (2006).
  24. H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express12, 1004–1010 (2004).

2011

Y. Gou, Y. Xuan, and Y. Han, “Investigation of spectral properties of metal-insulator-metal film stack with rectangular hole arrays,” Int. J. Thermophys.32, 1060 (2011).

2010

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).

2009

V. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, “A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons,” J. Appl. Phys.105, 033505 (2009).

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009).

2008

2007

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–44 (2007).

F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).

2006

B. Hou, Z. Hong Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett.89, 131917 (2006).

J. H. Kim and P. J. Moyer, “Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,” Opt. Express14, 6595–6603 (2006).

A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photon. Nanostr. Fund. Appl.4, 141–145 (2006).

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

2005

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B71, 235117 (2005).

2004

H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express12, 1004–1010 (2004).

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85, 4316–4318 (2004).

L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express12, 3619–3628 (2004).

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett.84, 2742–2744 (2004).

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett.29, 2500–2502 (2004).

2003

G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemy, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).

Andrews, A. M.

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express16, 4797–4803 (2008).

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

Averitt, R. D.

Azad, A. K.

Beruete, M.

Bolivar, P. H.

G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Bravo-Abad, J.

Campillo, I.

Cao, H.

Chan, C. T.

B. Hou, Z. Hong Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett.89, 131917 (2006).

Chen, H.-T.

Chen, Y.-F.

V. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, “A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons,” J. Appl. Phys.105, 033505 (2009).

Dolado, J. S.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–44 (2007).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemy, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).

Fu, V. H.-K.

V. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, “A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons,” J. Appl. Phys.105, 033505 (2009).

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).

L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express12, 3619–3628 (2004).

García-Vidal, F. J.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–44 (2007).

Ghaemy, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemy, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).

Glushko, A.

A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photon. Nanostr. Fund. Appl.4, 141–145 (2006).

Golka, S.

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

Gossard, A. C.

Gou, Y.

Y. Gou, Y. Xuan, and Y. Han, “Investigation of spectral properties of metal-insulator-metal film stack with rectangular hole arrays,” Int. J. Thermophys.32, 1060 (2011).

Han, Y.

Y. Gou, Y. Xuan, and Y. Han, “Investigation of spectral properties of metal-insulator-metal film stack with rectangular hole arrays,” Int. J. Thermophys.32, 1060 (2011).

Hangyo, M.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett.84, 2742–2744 (2004).

Hong Hang, Z.

B. Hou, Z. Hong Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett.89, 131917 (2006).

Hou, B.

B. Hou, Z. Hong Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett.89, 131917 (2006).

Jiang, Y.-W.

V. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, “A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons,” J. Appl. Phys.105, 033505 (2009).

Karachevtseva, L.

A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photon. Nanostr. Fund. Appl.4, 141–145 (2006).

Kim, J. H.

Klang, P.

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85, 4316–4318 (2004).

Kurz, H.

G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Lee, S.-C.

V. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, “A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons,” J. Appl. Phys.105, 033505 (2009).

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemy, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).

Lomakin, V.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B71, 235117 (2005).

Lu, H.

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).

L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express12, 3619–3628 (2004).

Martín-Moreno, L.

Michielssen, E.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B71, 235117 (2005).

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett.84, 2742–2744 (2004).

Moyer, P. J.

Nahata, A.

Nobile, M.

O’Hara, J. F.

Pfluegl, C.

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

Rivas, G.

G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Roch, T.

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

Schartner, S.

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express16, 4797–4803 (2008).

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

Schotsch, C.

G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Schrenk, W.

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express16, 4797–4803 (2008).

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

Segerink, F. B.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85, 4316–4318 (2004).

Sheng, P.

B. Hou, Z. Hong Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett.89, 131917 (2006).

Sorolla, M.

Strasser, G.

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express16, 4797–4803 (2008).

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

Taylor, A. J.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemy, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).

Trugman, S. A.

Tsai, M.-W.

V. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, “A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons,” J. Appl. Phys.105, 033505 (2009).

van der Molen, K. L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85, 4316–4318 (2004).

van Hulst, N. F.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85, 4316–4318 (2004).

Weiner, J.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009).

Wen, W.

B. Hou, Z. Hong Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett.89, 131917 (2006).

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemy, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).

Xuan, Y.

Y. Gou, Y. Xuan, and Y. Han, “Investigation of spectral properties of metal-insulator-metal film stack with rectangular hole arrays,” Int. J. Thermophys.32, 1060 (2011).

Appl. Phys. Lett.

B. Hou, Z. Hong Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett.89, 131917 (2006).

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85, 4316–4318 (2004).

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett.84, 2742–2744 (2004).

S. Schartner, S. Golka, C. Pfluegl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett.89, 151107 (2006).

Int. J. Thermophys.

Y. Gou, Y. Xuan, and Y. Han, “Investigation of spectral properties of metal-insulator-metal film stack with rectangular hole arrays,” Int. J. Thermophys.32, 1060 (2011).

J. Appl. Phys.

V. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, “A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons,” J. Appl. Phys.105, 033505 (2009).

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemy, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–44 (2007).

Opt. Express

Opt. Lett.

Photon. Nanostr. Fund. Appl.

A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photon. Nanostr. Fund. Appl.4, 141–145 (2006).

Phys. Rev. B

G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B71, 235117 (2005).

Rep. Prog. Phys.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009).

Rev. Mod. Phys.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).

F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985)

http://www.rsoftdesign.com/

K. Sakoda, Optical properties of Photonic crystals (Springer-Verlag, Berlin, 2001) 57–62.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light 2nd Ed., (Princeton University Press, 2008) p.242.

Supplementary Material (1)

» Media 1: AVI (8729 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the investigated structure.

Fig. 2
Fig. 2

Normal incidence reflectance (solid) and transmittance (dotted) spectra of the structure with the vertical parameters shown in Table 1 and for a 2D PhC with a = 3 μm, r = 0.9 μm, and h = 4 μm.

Fig. 3
Fig. 3

The xy cross sections of the near-field distributions of the amplitudes of Ey and Ez field components for the minima of dip 1 (a), dip 2 (b), and dip 3 (c) from Fig. 2. The grey scale is normalized to the amplitude of Ez component in the incident wave. The white color corresponds to the electric field amplitudes which are 4 and more times higher than in the incident wave. Two horizontal arrows on the left show the position of the metal layer. Field distributions for the entire spectral range are given in a movie (Media 1).

Fig. 4
Fig. 4

The distribution of Ey component of the electric field. Cases (a) and (c) are calculated by 2D PWEM and correspond to doubly degenerate dipole mode at the Γ-point of the TM band structure at a/λ = 0.692 and a/λ = 0.451, respectively. Cases (b) and (d) show instantaneous distributions calculated by 3D FDTD which correspond to the dips 1 and 3 from Fig. 2, respectively. The volume shown corresponds to that of the “active region”. The upper figures correspond to Ex-polarized source, the lower figures are for Ez-polarized source. The black horizontal lines mark the position of the cross-sections shown in Fig. 3.

Fig. 5
Fig. 5

(a), (b): Instantaneous 3D distributions of the strength of the Ex and Ez components of the electric field, respectively; both are for λ = 5.01 μm (dip 2). The polarization of the source is Ex for (a) and Ez for (b). The volume shown is the volume of the “active region”. (c), (d): the distributions of the amplitude of the Ex and Ez components, respectively, calculated by the 2D PWEM for the TE eigenmode located at reduced frequency a/λ = 0.5745. The parameters of the structure are the same as in Fig. 2.

Fig. 6
Fig. 6

Reflectance spectra for three different depths of the pores: 4 μm (black), 2.5 μm (red), and 1.5 μm (blue). The other parameters of the structure are the same as in Fig. 2.

Fig. 7
Fig. 7

Normal incidence reflectance spectra for the MHA-PhC structures with different parameters. The period of the PhC is a = 3 μm and the depth of the pores is h = 4 μm in all the cases. (a), (b), (c): the QWIP-like structures with vertical composition shown in Table 1 and r = 1.095 μm, r = 0.9 μm, r = 0.75 μm, respectively. (d): the metal layer is lying on a dielectric with n = 3.5; r = 0.9 μm. The vertical dotted lines show the positions of corresponding eigenmodes calculated by the 2D PWEM.

Tables (1)

Tables Icon

Table 1 Vertical composition of the structure considered. “Re(n)” and “Im(n)” are the real and imaginary parts of the refractive index, respectively.

Metrics