Abstract

A novel electro-colorimetric gas sensing technique based on the catalytic metal nanoparticles decorated metal oxide nanostructures integrated with multiple quantum wells (MQWs) has been proposed. The working principle has been demonstrated by the sensing device derived from the composite consisting of In0.15Ga0.85N/GaN MQWs and Pt-functionalized In2O3 nanopushpins for the detection of hydrogen gas. The pronounced changes in emission as well as Raman scattering spectra of InGaN/GaN MQWs under different target gas concentrations clearly illustrate the feasibility of our newly designed composites for the derivative of contact-free, simple and highly sensitive gas sensors with optical detection

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Huang and Q. Wan, “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures,” Sensors (Basel)9(12), 9903–9924 (2009).
  2. K. J. Choi and H. W. Jang, “One-dimensional oxide nanostructures as gas-sensing materials: review and issues,” Sensors (Basel)10(4), 4083–4099 (2010).
  3. A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003).
  4. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
  5. P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, “Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact,” Appl. Phys. Lett.89(24), 243514 (2006).
  6. A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett.95(15), 153109 (2009).
  7. M. Qazi, G. Koley, S. Park, and T. Vogt, “NO2 detection by adsorption induced work function changes in In2O3 thin films,” Appl. Phys. Lett.91(4), 043113 (2007).
  8. C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).
  9. J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).
  10. Q. Liang, H. Xu, J. Zhao, and S. Gao, “Micro humidity sensors based on ZnO–In2O3 thin films with high performances,” Sens. Actuators B Chem.165(1), 76–81 (2012).
  11. T. Hubert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
  12. B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).
  13. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
  14. H. Gu, Z. Wang, and Y. Hu, “Hydrogen gas sensors based on semiconductor oxide nanostructures,” Sensors (Basel Switzerland)12(5), 5517–5550 (2012).
  15. M. Qazi, J. Liu, M. V. S. Chandrashekhar, and G. Koley, “Surface electronic property of SiC correlated with NO2 adsorption,” J. Appl. Phys.106(9), 094901 (2009).
  16. Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Phys. Rev. B66(3), 035334 (2002).
  17. S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).
  18. T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).
  19. H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).
  20. C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).
  21. M. K. Kumar and S. Ramaprabhu, “Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor,” J. Phys. Chem. B110(23), 11291–11298 (2006).
  22. C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995).
  23. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

2012

Q. Liang, H. Xu, J. Zhao, and S. Gao, “Micro humidity sensors based on ZnO–In2O3 thin films with high performances,” Sens. Actuators B Chem.165(1), 76–81 (2012).

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).

H. Gu, Z. Wang, and Y. Hu, “Hydrogen gas sensors based on semiconductor oxide nanostructures,” Sensors (Basel Switzerland)12(5), 5517–5550 (2012).

2011

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).

T. Hubert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).

2010

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

K. J. Choi and H. W. Jang, “One-dimensional oxide nanostructures as gas-sensing materials: review and issues,” Sensors (Basel)10(4), 4083–4099 (2010).

2009

J. Huang and Q. Wan, “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures,” Sensors (Basel)9(12), 9903–9924 (2009).

A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett.95(15), 153109 (2009).

M. Qazi, J. Liu, M. V. S. Chandrashekhar, and G. Koley, “Surface electronic property of SiC correlated with NO2 adsorption,” J. Appl. Phys.106(9), 094901 (2009).

2007

M. Qazi, G. Koley, S. Park, and T. Vogt, “NO2 detection by adsorption induced work function changes in In2O3 thin films,” Appl. Phys. Lett.91(4), 043113 (2007).

2006

P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, “Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact,” Appl. Phys. Lett.89(24), 243514 (2006).

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

M. K. Kumar and S. Ramaprabhu, “Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor,” J. Phys. Chem. B110(23), 11291–11298 (2006).

2005

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).

2004

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

2003

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003).

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).

2002

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Phys. Rev. B66(3), 035334 (2002).

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).

Arbabi, A.

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).

Banach, U.

T. Hubert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).

Baratto, C.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).

Black, G.

T. Hubert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).

Boon-Brett, L.

T. Hubert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).

Chan, M. H.

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

Chandrashekhar, M. V. S.

M. Qazi, J. Liu, M. V. S. Chandrashekhar, and G. Koley, “Surface electronic property of SiC correlated with NO2 adsorption,” J. Appl. Phys.106(9), 094901 (2009).

Chen, Y. F.

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).

Chen, Y. T.

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

Cheng, G. S.

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003).

Choi, K. J.

K. J. Choi and H. W. Jang, “One-dimensional oxide nanostructures as gas-sensing materials: review and issues,” Sensors (Basel)10(4), 4083–4099 (2010).

Choi, S. W.

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

Choquette, K. D.

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).

Comini, E.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).

El-Maghraby, E. M.

A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett.95(15), 153109 (2009).

Faglia, G.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).

Feng, P.

P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, “Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact,” Appl. Phys. Lett.89(24), 243514 (2006).

Gao, S.

Q. Liang, H. Xu, J. Zhao, and S. Gao, “Micro humidity sensors based on ZnO–In2O3 thin films with high performances,” Sens. Actuators B Chem.165(1), 76–81 (2012).

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).

Goddard, L. L.

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).

Griffin, B. G.

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).

Gu, H.

H. Gu, Z. Wang, and Y. Hu, “Hydrogen gas sensors based on semiconductor oxide nanostructures,” Sensors (Basel Switzerland)12(5), 5517–5550 (2012).

Han, S.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).

Hsiai, T.

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Hu, Y.

H. Gu, Z. Wang, and Y. Hu, “Hydrogen gas sensors based on semiconductor oxide nanostructures,” Sensors (Basel Switzerland)12(5), 5517–5550 (2012).

Huang, C. Y.

C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).

Huang, J.

J. Huang and Q. Wan, “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures,” Sensors (Basel)9(12), 9903–9924 (2009).

Hubert, T.

T. Hubert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).

Jang, H. W.

K. J. Choi and H. W. Jang, “One-dimensional oxide nanostructures as gas-sensing materials: review and issues,” Sensors (Basel)10(4), 4083–4099 (2010).

Jho, Y. D.

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Phys. Rev. B66(3), 035334 (2002).

Jiang, C.

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

Kasten, A. M.

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).

Kikuta, T.

A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett.95(15), 153109 (2009).

Kim, D. S.

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Phys. Rev. B66(3), 035334 (2002).

Kim, H. S.

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

Kim, H. W.

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

Kim, S. S.

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

Koley, G.

M. Qazi, J. Liu, M. V. S. Chandrashekhar, and G. Koley, “Surface electronic property of SiC correlated with NO2 adsorption,” J. Appl. Phys.106(9), 094901 (2009).

M. Qazi, G. Koley, S. Park, and T. Vogt, “NO2 detection by adsorption induced work function changes in In2O3 thin films,” Appl. Phys. Lett.91(4), 043113 (2007).

Kolmakov, A.

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003).

Kumar, M. K.

M. K. Kumar and S. Ramaprabhu, “Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor,” J. Phys. Chem. B110(23), 11291–11298 (2006).

Lei, B.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Li, C.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Li, J.

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

Lian, J. K.

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

Liang, Q.

Q. Liang, H. Xu, J. Zhao, and S. Gao, “Micro humidity sensors based on ZnO–In2O3 thin films with high performances,” Sens. Actuators B Chem.165(1), 76–81 (2012).

Lin, G. C.

C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).

Lin, T. Y.

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).

T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).

Liu, J.

M. Qazi, J. Liu, M. V. S. Chandrashekhar, and G. Koley, “Surface electronic property of SiC correlated with NO2 adsorption,” J. Appl. Phys.106(9), 094901 (2009).

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).

Liu, X.

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Liu, X. L.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

Liu, Y. G.

P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, “Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact,” Appl. Phys. Lett.89(24), 243514 (2006).

Liu, Z. Q.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

Mao, S. X.

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

Moskovits, M.

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003).

Na, H. G.

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

Oh, E.

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Phys. Rev. B66(3), 035334 (2002).

Park, J. Y.

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

Park, S.

M. Qazi, G. Koley, S. Park, and T. Vogt, “NO2 detection by adsorption induced work function changes in In2O3 thin films,” Appl. Phys. Lett.91(4), 043113 (2007).

Qazi, M.

M. Qazi, J. Liu, M. V. S. Chandrashekhar, and G. Koley, “Surface electronic property of SiC correlated with NO2 adsorption,” J. Appl. Phys.106(9), 094901 (2009).

M. Qazi, G. Koley, S. Park, and T. Vogt, “NO2 detection by adsorption induced work function changes in In2O3 thin films,” Appl. Phys. Lett.91(4), 043113 (2007).

Qurashi, A.

A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett.95(15), 153109 (2009).

Ramaprabhu, S.

M. K. Kumar and S. Ramaprabhu, “Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor,” J. Phys. Chem. B110(23), 11291–11298 (2006).

Rouhanizadeh, M.

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Sberveglieri, G.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).

Shih, H. Y.

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).

Tang, T.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Vogt, T.

M. Qazi, G. Koley, S. Park, and T. Vogt, “NO2 detection by adsorption induced work function changes in In2O3 thin films,” Appl. Phys. Lett.91(4), 043113 (2007).

Wan, Q.

J. Huang and Q. Wan, “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures,” Sensors (Basel)9(12), 9903–9924 (2009).

Wang, T. H.

P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, “Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact,” Appl. Phys. Lett.89(24), 243514 (2006).

Wang, Z.

H. Gu, Z. Wang, and Y. Hu, “Hydrogen gas sensors based on semiconductor oxide nanostructures,” Sensors (Basel Switzerland)12(5), 5517–5550 (2012).

Wei, C. M.

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

Wei, Y.

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

Wu, N.

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

Wu, Y. J.

C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).

Xu, H.

Q. Liang, H. Xu, J. Zhao, and S. Gao, “Micro humidity sensors based on ZnO–In2O3 thin films with high performances,” Sens. Actuators B Chem.165(1), 76–81 (2012).

Xu, J.

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

Xue, X. Y.

P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, “Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact,” Appl. Phys. Lett.89(24), 243514 (2006).

Yahng, J. S.

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Phys. Rev. B66(3), 035334 (2002).

Yamazaki, T.

A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett.95(15), 153109 (2009).

Yang, J. C.

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

Yang, Y. J.

C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).

Zappettini, A.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).

Zha, M.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).

Zhang, D.

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Zhang, D. H.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

Zhang, Y. X.

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003).

Zhao, J.

Q. Liang, H. Xu, J. Zhao, and S. Gao, “Micro humidity sensors based on ZnO–In2O3 thin films with high performances,” Sens. Actuators B Chem.165(1), 76–81 (2012).

Zhao, M.

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

Zhou, C.

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

Zhou, C. W.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

Adv. Mater. (Deerfield Beach Fla.)

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003).

Appl. Phys. Lett.

P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, “Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact,” Appl. Phys. Lett.89(24), 243514 (2006).

A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett.95(15), 153109 (2009).

M. Qazi, G. Koley, S. Park, and T. Vogt, “NO2 detection by adsorption induced work function changes in In2O3 thin films,” Appl. Phys. Lett.91(4), 043113 (2007).

C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).

T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).

IEEE J. Quantum Electron.

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).

J. Appl. Phys.

M. Qazi, J. Liu, M. V. S. Chandrashekhar, and G. Koley, “Surface electronic property of SiC correlated with NO2 adsorption,” J. Appl. Phys.106(9), 094901 (2009).

J. Phys. Chem. B

M. K. Kumar and S. Ramaprabhu, “Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor,” J. Phys. Chem. B110(23), 11291–11298 (2006).

J. Phys. Chem. C

H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).

C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).

Nano Lett.

D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

Nanotechnology

S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).

Nat. Mater.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).

Phys. Rev. B

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Phys. Rev. B66(3), 035334 (2002).

Sens. Actuators B Chem.

Q. Liang, H. Xu, J. Zhao, and S. Gao, “Micro humidity sensors based on ZnO–In2O3 thin films with high performances,” Sens. Actuators B Chem.165(1), 76–81 (2012).

T. Hubert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).

Sensors (Basel Switzerland)

H. Gu, Z. Wang, and Y. Hu, “Hydrogen gas sensors based on semiconductor oxide nanostructures,” Sensors (Basel Switzerland)12(5), 5517–5550 (2012).

Sensors (Basel)

J. Huang and Q. Wan, “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures,” Sensors (Basel)9(12), 9903–9924 (2009).

K. J. Choi and H. W. Jang, “One-dimensional oxide nanostructures as gas-sensing materials: review and issues,” Sensors (Basel)10(4), 4083–4099 (2010).

Small

J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).

Other

C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Bright field transmission electron microscopy (TEM) image of In2O3 nanopushpins. (b) Enlarged TEM image (a) of In2O3 nanopushpins. The inset shows the selected area diffraction (SAD) pattern. (c) High-resolution TEM (HRTEM) lattice image of the In2O3 nanopushpins. (d) Schematic diagram of InGaN/GaN multiple quantum wells (MQWs) structure with In2O3 nanopushpins.

Fig. 2
Fig. 2

(a) Photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with Pt-functionalized In2O3 nanopushpins, (b) InGaN/GaN MQWs with In2O3 nanopushpins, and (c) InGaN/GaN MQWs under different concentrations of target hydrogen gas. (d) PL peak energy of the spectra in (a), (b), and (c) as function of the concentration of target hydrogen gas.

Fig. 3
Fig. 3

(a) Raman scattering spectra of InGaN/GaN multiple quantum wells (MQWs) with Pt-functionalized In2O3 nanopushpins, (b) InGaN/GaN MQWs with In2O3 nanopushpins, and (c) InGaN/GaN MQWs under different concentrations of target hydrogen gas. (d) Raman peak position of the spectra in (a), (b), and (c) as function of the concentration of target hydrogen gas.

Fig. 4
Fig. 4

The wavelength shift as a function of hydrogen gas concentrations of InGaN/GaN multiple quantum wells (MQWs) with Pt-functionalized In2O3 nanopushpins and InGaN/GaN MQWs with In2O3 nanopushpins. The solid curves represent the best fits to a Langmuir isotherm.

Fig. 5
Fig. 5

Temporal response of PL peak intensity of the InGaN/GaN multiple quantum wells with In2O3 nanopushpins for one on-off cycle upon exposure to 3000 ppm hydrogen gas measured at room temperature.

Metrics