Abstract

The absorptance of superconducting nanowire single-photon detectors consisting of subwavelength NbN stripes arrayed in 200 nm and 600 nm periodic patterns and integrated with nano-cavity-array and closing gold segments is maximized at the wavelength of 1550 nm via numerical computations. It is shown that the optimum azimuthal angles are γ = 90° (S-orientation) in case of p-polarized illumination, and γ = 0° (P-orientation) during s-polarized illumination. The p-polarized illumination of 200-nm-pitch design in S-orientation results in polar angle independent ~95% NbN absorptance due to collective resonances on the nano-cavity-array. In 600-nm-pitch design a local absorptance maximum (37.2%) appears as a result of near-field concentration promoted by Brewster-wave excitation during p-polarized illumination in S-orientation. For practical applications s-polarized illumination of 600-nm-pitch design in P-orientation is proposed, as ~52% absorptance larger than in case of perpendicular incidence is attainable due to total internal reflection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
    [CrossRef]
  2. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
    [CrossRef] [PubMed]
  3. A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).
  4. X. J. Yu and H. S. Kwok, “Optical wire grid polarizers at oblique angles of incidence,” J. Appl. Phys.93(8), 4407–4412 (2003).
    [CrossRef]
  5. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008).
    [CrossRef] [PubMed]
  6. G. R. Bird and M. Parrish., “The wire grid as near-infrared polarizer,” J. Opt. Soc. Am.50(9), 886–891 (1960).
  7. E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
    [CrossRef]
  8. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006).
    [CrossRef] [PubMed]
  9. M. Csete, Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, “Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors,” Appl. Opt.50(31), 5949–5956 (2011).
    [CrossRef] [PubMed]
  10. M. Csete, Á. Sipos, F. Najafi, and K. K. Berggren, “Polar-azimuthal angle dependent efficiency of different infrared superconducting nanowire single-photon detector designs,” Proc. SPIE8155, 81551K, 81551K-8 (2011).
    [CrossRef]
  11. X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009).
    [CrossRef]
  12. X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express19(1), 17–31 (2011).
    [CrossRef] [PubMed]
  13. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007).
    [CrossRef]
  14. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009).
    [CrossRef]
  15. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
    [CrossRef]
  16. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron.43(6), 479–485 (2007).
    [CrossRef]
  17. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
    [CrossRef]
  18. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
    [CrossRef]
  19. E. Popov, N. Bonod, and S. Enoch, “Non-Bloch plasmonic stop-band in real-metal gratings,” Opt. Express15(10), 6241–6250 (2007).
    [CrossRef] [PubMed]
  20. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B59(19), 12661–12666 (1999).
    [CrossRef]
  21. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
    [CrossRef]
  22. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” 2002 Phys. Rev. B66(15), 155412 (2002).
    [CrossRef]
  23. E. K. Popov, N. Bonod, and S. Enoch, “Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings,” Opt. Express15(7), 4224–4237 (2007).
    [CrossRef] [PubMed]
  24. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
    [CrossRef] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).
  26. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
    [CrossRef]
  27. J.-J. Greffet and C. Baylard, “Nonspecular reflection from a lossy dielectric,” Opt. Lett.18(14), 1129–1131 (1993).
    [CrossRef] [PubMed]
  28. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]

2011 (4)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, “Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors,” Appl. Opt.50(31), 5949–5956 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, and K. K. Berggren, “Polar-azimuthal angle dependent efficiency of different infrared superconducting nanowire single-photon detector designs,” Proc. SPIE8155, 81551K, 81551K-8 (2011).
[CrossRef]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express19(1), 17–31 (2011).
[CrossRef] [PubMed]

2010 (1)

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

2009 (3)

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009).
[CrossRef]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009).
[CrossRef]

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
[CrossRef]

2008 (1)

2007 (5)

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007).
[CrossRef]

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron.43(6), 479–485 (2007).
[CrossRef]

E. Popov, N. Bonod, and S. Enoch, “Non-Bloch plasmonic stop-band in real-metal gratings,” Opt. Express15(10), 6241–6250 (2007).
[CrossRef] [PubMed]

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

E. K. Popov, N. Bonod, and S. Enoch, “Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings,” Opt. Express15(7), 4224–4237 (2007).
[CrossRef] [PubMed]

2006 (4)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
[CrossRef]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006).
[CrossRef] [PubMed]

2004 (1)

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

2003 (1)

X. J. Yu and H. S. Kwok, “Optical wire grid polarizers at oblique angles of incidence,” J. Appl. Phys.93(8), 4407–4412 (2003).
[CrossRef]

2002 (1)

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” 2002 Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

1999 (2)

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B59(19), 12661–12666 (1999).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

1993 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

1960 (1)

Anant, V.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Baylard, C.

Bellei, F.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

Berggren, K. K.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, “Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors,” Appl. Opt.50(31), 5949–5956 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, and K. K. Berggren, “Polar-azimuthal angle dependent efficiency of different infrared superconducting nanowire single-photon detector designs,” Proc. SPIE8155, 81551K, 81551K-8 (2011).
[CrossRef]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express19(1), 17–31 (2011).
[CrossRef] [PubMed]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009).
[CrossRef]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009).
[CrossRef]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007).
[CrossRef]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006).
[CrossRef] [PubMed]

Bird, G. R.

Blanchard, R.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Bonod, N.

Brongersma, M. L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron.43(6), 479–485 (2007).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Capasso, F.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Chulkova, G.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Csete, M.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, “Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors,” Appl. Opt.50(31), 5949–5956 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, and K. K. Berggren, “Polar-azimuthal angle dependent efficiency of different infrared superconducting nanowire single-photon detector designs,” Proc. SPIE8155, 81551K, 81551K-8 (2011).
[CrossRef]

Currier, M.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

Dal Negro, L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron.43(6), 479–485 (2007).
[CrossRef]

Dauler, E.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

Dauler, E. A.

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express19(1), 17–31 (2011).
[CrossRef] [PubMed]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009).
[CrossRef]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009).
[CrossRef]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

de Dood, M. J. A.

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Driessen, E. F. C.

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
[CrossRef]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Enoch, S.

Feng, N. N.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron.43(6), 479–485 (2007).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” 2002 Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

Gatzogiannis, E.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Genevet, P.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Gol’tsman, G.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Gol’tsman, G. N.

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006).
[CrossRef] [PubMed]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Greffet, J.-J.

Holzwarth, C. W.

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009).
[CrossRef]

Hu, X.

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express19(1), 17–31 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, “Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors,” Appl. Opt.50(31), 5949–5956 (2011).
[CrossRef] [PubMed]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009).
[CrossRef]

Kats, M. A.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Kerman, A. J.

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009).
[CrossRef]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Korneev, A.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

Kuominov, P.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
[CrossRef]

Kwok, H. S.

X. J. Yu and H. S. Kwok, “Optical wire grid polarizers at oblique angles of incidence,” J. Appl. Phys.93(8), 4407–4412 (2003).
[CrossRef]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Marsili, F.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” 2002 Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

Masciarelli, D.

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
[CrossRef]

Molnar, R. J.

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express19(1), 17–31 (2011).
[CrossRef] [PubMed]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009).
[CrossRef]

Najafi, F.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, and K. K. Berggren, “Polar-azimuthal angle dependent efficiency of different infrared superconducting nanowire single-photon detector designs,” Proc. SPIE8155, 81551K, 81551K-8 (2011).
[CrossRef]

M. Csete, Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, “Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors,” Appl. Opt.50(31), 5949–5956 (2011).
[CrossRef] [PubMed]

Okunev, O.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Parrish, M.

Pearlman, A.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Popov, E.

Popov, E. K.

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Preist, T. W.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B59(19), 12661–12666 (1999).
[CrossRef]

Rosfjord, K. M.

Sambles, J. R.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B59(19), 12661–12666 (1999).
[CrossRef]

Scully, M. O.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Sipos, Á.

M. Csete, Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, “Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors,” Appl. Opt.50(31), 5949–5956 (2011).
[CrossRef] [PubMed]

M. Csete, Á. Sipos, F. Najafi, and K. K. Berggren, “Polar-azimuthal angle dependent efficiency of different infrared superconducting nanowire single-photon detector designs,” Proc. SPIE8155, 81551K, 81551K-8 (2011).
[CrossRef]

Slysz, W.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

Smirnov, K.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Sobolewski, R.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tan, W. C.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B59(19), 12661–12666 (1999).
[CrossRef]

Tetienne, J.-P.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Verevkin, A.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Voronov, B. M.

Wanstall, N. P.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B59(19), 12661–12666 (1999).
[CrossRef]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

Yang, J. K. W.

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009).
[CrossRef]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008).
[CrossRef] [PubMed]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Yu, X. J.

X. J. Yu and H. S. Kwok, “Optical wire grid polarizers at oblique angles of incidence,” J. Appl. Phys.93(8), 4407–4412 (2003).
[CrossRef]

Zhang, J.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001).
[CrossRef]

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron.43(6), 479–485 (2007).
[CrossRef]

IEEE Trans. Appl. Supercond. (2)

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007).
[CrossRef]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009).
[CrossRef]

J. Appl. Phys. (1)

X. J. Yu and H. S. Kwok, “Optical wire grid polarizers at oblique angles of incidence,” J. Appl. Phys.93(8), 4407–4412 (2003).
[CrossRef]

J. Mod. Opt. (1)

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).

J. Opt. Soc. Am. (1)

Nano Lett. (2)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011).
[CrossRef] [PubMed]

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (4)

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B59(19), 12661–12666 (1999).
[CrossRef]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” 2002 Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Proc. SPIE (1)

M. Csete, Á. Sipos, F. Najafi, and K. K. Berggren, “Polar-azimuthal angle dependent efficiency of different infrared superconducting nanowire single-photon detector designs,” Proc. SPIE8155, 81551K, 81551K-8 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).

Supplementary Material (2)

» Media 1: AVI (3552 KB)     
» Media 2: AVI (3716 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a, b) Schematic drawings of the investigated device designs: NbN patterns with p = 200 nm and p = 600 nm periodicity, t = 4 nm thickness and f = 50% and f = 16.7% fill factor, covered by t = 2 nm NbNOx layer, are arrayed below hydrogen silsesquioxane-filled nano-cavities having lOC = 220 nm length, and surrounded by vertical and horizontal gold segments (a) in 200-nm-pitch design and (b) in 600-nm-pitch design. (c, d) These integrated NCAI-SNSPD structures are illuminated by polarized λ = 1550 nm light from sapphire substrate side, the φ polar angle is measured from the surface normal, while the azimuthal orientation is specified by the γ angle between the plane of light incidence and the NbN pattern. (c) P-polarized light illumination of periodic patterns in S-orientation; (d) s-polarized light illumination of periodic patterns in P-orientation.

Fig. 2
Fig. 2

(a, b) Absorptance, (c, d) reflectance and (e, f) transmittance in case of (a, c, e) p-polarized and (b, d, f) s-polarized light illumination, determined by TMM for all layers composing the NCAI-SNSPD systems, and for 200-nm-pitch and 600-nm-pitch NCAI-SNSPDs computed by weighting the optical responses of the composing stacks according to their fill-factors.

Fig. 3
Fig. 3

Dual-angle dependent absorptance of NbN stripes (a) in 200-nm-pitch design and (b) in 600-nm-pitch design, illuminated by p-polarized light from sapphire substrate side.

Fig. 4
Fig. 4

Dual-angle dependent absorptance of NbN stripes (a) in 200-nm-pitch design and (b) in 600-nm-pitch design, illuminated by s-polarized light from sapphire substrate side.

Fig. 5
Fig. 5

The comparison of the optical responses in case of p-polarized illumination in S-orientation ( γ=90° , closed symbols) and s-polarized illumination in P-orientation ( γ=0° , open symbols) (a) of 200-nm-pitch design, and (b) in 600-nm-pitch design.

Fig. 6
Fig. 6

(a-d) The normalized (E)-field distribution in case of p-polarized light illumination of NCAI-structures in S-orientation at planes shown in Figs. 7(e, f), at polar angles corresponding to (a) global maximum, and (b) local minimum on the absorptance of 200-nm-pitch design; (c) global minimum, and (d) local maximum on the absorptance of 600-nm-pitch design. The video recordings in (Media 1 and Media 2) about the time evolution of the (E)-field cross-sections taken in vertical plane presented by (e) model scheme indicate (f) efficient back-reflection at 27.4° polar angle (Media 1); while (g) a backward propagating Brewster-wave that promotes (E)-field concentration below each third cavity oscillating in-phase can be seen below the “boundary” at 29° polar angle (Media 2). (Notice that the apparent wavelength is doubled on the presented [( E x 2 + E y 2 + E z 2 )] 1/2 quantity).

Fig. 7
Fig. 7

The normalized (E)-field distribution in case of s-polarized light illumination of NCAI-structures in P-orientation at (a) perpendicular incidence, and (b) at TIR in 200-nm-pitch design; (c) at perpendicular incidence, and (d) at TIR in 600-nm-pitch design. The (e-f) schematic drawings indicate unit cells in the planes where the near-field cross-sections were taken, and (g) model scheme shows the relationship between the schematic drawings 7(f) and 6(e).

Fig. 8
Fig. 8

FEM optical responses (lines with symbols) in case of (a, b) p-polarized illumination of NCAI-SNSPDs in S-orientation ( γ=90° , lines with closed symbols) and (c, d) s-polarized illumination of NCAI-SNSPDs in P-orientation ( γ=0° , open symbols) in (a, c) 200-nm-pitch design, and in (b, d) 600-nm-pitch design compared to optical responses determined by TMM.

Tables (1)

Tables Icon

Table 1 Real (n1) and imaginary (n2) parts of the refractive indices of materials in NCAI-SNSPD designs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sin ϕ m,k = L D = m λ n sapphire kp ,
1 p photonic = n sapphire sinϕ λ .
1 p adaptive = 1 p n sapphire sinϕ λ .
p adaptive λ n sapphire .
p adaptive λ 2 n sapphire sinϕ ,
2π λ Brewsterwave = 2π n sapphire sinϕ λ 2π p .

Metrics