Abstract

A polarization independent variable optical attenuator (VOA) based on a dielectrically stretched liquid crystal (LC) droplet is demonstrated. In the voltage-off state, the proposed VOA has the smallest attenuation. As voltage increases, the LC droplet is stretched by a dielectrophoretic force, which gradually deflects the beam leading to an increased attenuation. Such a VOA can cover the entire C-Band. At λ = 1550 nm, the following results are obtained: dynamic range ~32 dB, insertion loss ~0.7 dB, polarization dependent loss ~0.3 dB, and response time ~20 ms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001).
    [CrossRef]
  2. S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng.18(7), 075003 (2008).
    [CrossRef]
  3. L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express13(24), 9916–9921 (2005).
    [CrossRef] [PubMed]
  4. M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
    [CrossRef]
  5. R. A. Soref and D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid-crystal device,” Opt. Lett.5(4), 147–149 (1980).
    [CrossRef] [PubMed]
  6. N. A. Riza and S. A. Khan, “Liquid-crystal-deflector based variable fiber-optic attenuator,” Appl. Opt.43(17), 3449–3455 (2004).
    [CrossRef] [PubMed]
  7. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
    [CrossRef]
  8. F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004).
    [CrossRef]
  9. Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express12(7), 1221–1227 (2004).
    [CrossRef] [PubMed]
  10. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004).
    [CrossRef] [PubMed]
  11. K. Takizawa, K. Kodama, and K. Kishi, “Polarization-independent optical fiber modulator by use of polymer-dispersed liquid crystals,” Appl. Opt.37(15), 3181–3189 (1998).
    [CrossRef] [PubMed]
  12. K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun.282(22), 4374–4377 (2009).
    [CrossRef]
  13. W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012).
    [CrossRef] [PubMed]
  14. W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
    [CrossRef]
  15. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett.36(8), 1404–1406 (2011).
    [CrossRef] [PubMed]
  16. C. G. Tsai and J. A. Yeh, “Circular dielectric liquid iris,” Opt. Lett.35(14), 2484–2486 (2010).
    [CrossRef] [PubMed]
  17. H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express18(11), 11904–11910 (2010).
    [CrossRef] [PubMed]
  18. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express19(3), 1985–1990 (2011).
    [CrossRef] [PubMed]
  19. J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett.40(1), 4–5 (1982).
    [CrossRef]
  20. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun.282(7), 1298–1303 (2009).
    [CrossRef]
  21. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011).
    [CrossRef] [PubMed]
  22. C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
    [CrossRef] [PubMed]
  23. G. G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Fluoropolymers 2: Properties (Plenum Press, New York, 1999).
  24. H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip11(20), 3426–3430 (2011).
    [CrossRef] [PubMed]
  25. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (Cambridge, MIT, 1967).
  26. M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt.42(3), 550–565 (2003).
    [CrossRef] [PubMed]
  27. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  28. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  29. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express17(13), 10499–10505 (2009).
    [CrossRef] [PubMed]

2012

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

2011

2010

2009

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun.282(22), 4374–4377 (2009).
[CrossRef]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun.282(7), 1298–1303 (2009).
[CrossRef]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

2008

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng.18(7), 075003 (2008).
[CrossRef]

2005

2004

N. A. Riza and S. A. Khan, “Liquid-crystal-deflector based variable fiber-optic attenuator,” Appl. Opt.43(17), 3449–3455 (2004).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004).
[CrossRef]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express12(7), 1221–1227 (2004).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

2003

2001

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001).
[CrossRef]

1998

1982

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett.40(1), 4–5 (1982).
[CrossRef]

1980

Beni, G.

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett.40(1), 4–5 (1982).
[CrossRef]

Chen, K. M.

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun.282(22), 4374–4377 (2009).
[CrossRef]

Chigrinov, V.

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

Cui, H. Q.

Du, F.

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004).
[CrossRef]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express12(7), 1221–1227 (2004).
[CrossRef] [PubMed]

Dürr, P.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001).
[CrossRef]

Fan, Y. H.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004).
[CrossRef]

Hackwood, S.

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett.40(1), 4–5 (1982).
[CrossRef]

Hsieh, H. T.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng.18(7), 075003 (2008).
[CrossRef]

Hu, W.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

Huang, T. J.

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

Huang, Y.

Hung, S. H.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng.18(7), 075003 (2008).
[CrossRef]

Jackel, J. L.

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett.40(1), 4–5 (1982).
[CrossRef]

Karuwan, C.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Khan, S. A.

Kishi, K.

Kodama, K.

Kück, H.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001).
[CrossRef]

Kunze, D.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001).
[CrossRef]

Lakner, H.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001).
[CrossRef]

Lapsley, M. I.

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

Li, Y.

Liang, X.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

Lin, S. C. S.

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

Lin, X. W.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

Lin, Y. H.

Lin, Y. J.

Lu, Y. Q.

Mao, X.

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

McMahon, D. H.

Mugele, F.

Murade, C. U.

Oh, J. M.

Patthanasettakul, V.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Phokharatkul, D.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Ren, D.

Ren, H.

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express19(3), 1985–1990 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip11(20), 3426–3430 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun.282(22), 4374–4377 (2009).
[CrossRef]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

Reza, S. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun.282(7), 1298–1303 (2009).
[CrossRef]

Riza, N. A.

Schenk, H.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001).
[CrossRef]

Soref, R. A.

Srivastava, A.

Srivastava, A. K.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

Su, G. D. J.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng.18(7), 075003 (2008).
[CrossRef]

Sukthang, K.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Sun, J. T.

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

Takizawa, K.

Tsai, C. G.

Tuantranont, A.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

van Buren, M.

van den Ende, D.

Wechsatol, W.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Wisitsoraat, A.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Wu, J.

Wu, S. T.

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express19(3), 1985–1990 (2011).
[CrossRef] [PubMed]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett.36(8), 1404–1406 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip11(20), 3426–3430 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun.282(22), 4374–4377 (2009).
[CrossRef]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express12(7), 1221–1227 (2004).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004).
[CrossRef]

Wu, Y. H.

Wu, Z. J.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

Xianyu, H.

Xu, F.

Xu, S.

Yan, J.

Yariv, A.

Yeh, J. A.

Zhu, G.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

Zhu, L.

Appl. Opt.

Appl. Phys. Lett.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012).
[CrossRef]

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett.40(1), 4–5 (1982).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

J. Micromech. Microeng.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng.18(7), 075003 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004).
[CrossRef]

Lab Chip

H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip11(20), 3426–3430 (2011).
[CrossRef] [PubMed]

Opt. Commun.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun.282(7), 1298–1303 (2009).
[CrossRef]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun.282(22), 4374–4377 (2009).
[CrossRef]

Opt. Express

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011).
[CrossRef] [PubMed]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express12(7), 1221–1227 (2004).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express13(24), 9916–9921 (2005).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express19(3), 1985–1990 (2011).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Sens. Actuators A Phys.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001).
[CrossRef]

Talanta

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Other

G. G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Fluoropolymers 2: Properties (Plenum Press, New York, 1999).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

P. Penfield and H. A. Haus, Electrodynamics of Moving Media (Cambridge, MIT, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Side-view structure of the VOA at V = 0, (b) V>0, and (c) the layout of the interdigitated ITO electrode and Teflon layer on the bottom substrate (The hole size and the width of ITO stripes are not drawn by scale.)

Fig. 2
Fig. 2

Experimental setup for characterizing the VOA sample.

Fig. 3
Fig. 3

Measured (a) Attenuation and PDL vs. operating voltages and (b) Switching time at V = 40Vrms (λ = 1550nm).

Fig. 4
Fig. 4

Droplet surface stretching and beam deflection with increased voltage.

Fig. 5
Fig. 5

Measured VOA broadband operation at (a) V = 25Vrms (~5dB attenuation setting), (b) V = 30Vrms (~20dB attenuation setting) and (c) V = 35Vrms (~30dB attenuation setting) for C-Band operation with OSA resolution of 10 dB/Div, and (d) V = 20Vrms (~3dB attenuation setting) with OSA resolution of 2 dB/Div.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = ε 0 2 ( ε 1 ε 2 )(EE),

Metrics