Abstract

We present a comparison between an in-field and in-laboratory 50 km ultralong Erbium fiber lasers actively mode-locked with repetition rate varying from 1 to 10 GHz generating pulses from 35.2 to 68.7 ps. The pulse widths generated at higher frequencies are in agreement with Kuizenga-Siegman theory. However, for lower frequencies the pulses have higher intracavity peak power which allows the soliton effect to take place. Depending on the pump power level, the repetition rate and the cavity length both lasers can operate in active mode-locking or under the influence of the soliton regime that locks the pulse duration according to the dispersion and cavity length. Due to the soliton robustness, this condition eliminates most of the environmental influence in the in-field mode-locking regime and makes both lasers very similar.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol.24(12), 4697–4710 (2006).
    [CrossRef]
  2. M. Nakazawa, M. Tokuda, and N. Uchida, “Continuous-wave laser oscillation with an ultralong optical-fiber resonator,” J. Opt. Soc. Am.72(10), 1338–1344 (1982).
    [CrossRef]
  3. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004).
    [CrossRef] [PubMed]
  4. T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
    [CrossRef]
  5. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
    [CrossRef] [PubMed]
  6. S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
    [CrossRef] [PubMed]
  7. V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15(25), 16690–16695 (2007).
    [CrossRef] [PubMed]
  8. B. Fischer, B. Vodonos, S. Atkins, and A. Bekker, “Experimental demonstration of localization in the frequency domain of mode-locked lasers with dispersion,” Opt. Lett.27(12), 1061–1063 (2002).
    [CrossRef] [PubMed]
  9. J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett.97(14), 140502 (2006).
    [CrossRef] [PubMed]
  10. A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express16(21), 16680–16690 (2008).
    [CrossRef] [PubMed]
  11. O. Kotlicki and J. Scheuer, “Secure key distribution over a 200 km long link employing a novel Ultra-long Fiber Lasers (UFL) scheme,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper ATuA4.
  12. H. G. Rosa and E. A. de Souza, “58 kHz Ultra-low Repetition Rate Ultralong Erbium-Doped Fiber Laser Mode-Locked by Carbon Nanotubes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2011), paper JWA29.
  13. L. A. M. Saito and E. A. Thoroh de Souza, “Identifying the mechanisms of pulse formation and evolution in actively mode-locked Erbium fiber lasers with meters and kilometers-long,” Opt. Express (Submitted for publication).
  14. L. A. M. Saito, M. A. Romero, and E. A. Souza, “48.8 km Ultralong Erbium fiber laser in active mode-locking operation,” Opt. Rev.17(4), 385–387 (2010).
    [CrossRef]
  15. E. S. Boncristiano, L. A. M. Saito, and E. A. De Souza, “396 fs pulse from an asynchronous mode-locked Erbium fiber laser with 2.5-12 GHz repetition rate,” Microw. Opt. Technol. Lett.50(11), 2994–2996 (2008).
    [CrossRef]
  16. M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J.-D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett.34(20), 3104–3106 (2009).
    [CrossRef] [PubMed]
  17. D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser - Part I: Theory,” IEEE J. Quantum Electron.6(11), 694–708 (1970).
    [CrossRef]
  18. M. Silva, T. C. Carvalho, R. M. Silveira, G. M. Ferreira, W. V. Ruggiero, H. L. Fragnito, H. Waldmann, C. Ruggiero, and L. F. Lopez, “Fiber-based testbed architecture enabling advanced experimental research,” in 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities, IEEE, 246–253 (2006).
  19. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press 2007).
  21. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett.8(5), 289–291 (1983).
    [CrossRef] [PubMed]

2010 (1)

L. A. M. Saito, M. A. Romero, and E. A. Souza, “48.8 km Ultralong Erbium fiber laser in active mode-locking operation,” Opt. Rev.17(4), 385–387 (2010).
[CrossRef]

2009 (2)

M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J.-D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett.34(20), 3104–3106 (2009).
[CrossRef] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
[CrossRef] [PubMed]

2008 (2)

E. S. Boncristiano, L. A. M. Saito, and E. A. De Souza, “396 fs pulse from an asynchronous mode-locked Erbium fiber laser with 2.5-12 GHz repetition rate,” Microw. Opt. Technol. Lett.50(11), 2994–2996 (2008).
[CrossRef]

A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express16(21), 16680–16690 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (3)

E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol.24(12), 4697–4710 (2006).
[CrossRef]

T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
[CrossRef]

J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett.97(14), 140502 (2006).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

1992 (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

1983 (1)

1982 (1)

1970 (1)

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser - Part I: Theory,” IEEE J. Quantum Electron.6(11), 694–708 (1970).
[CrossRef]

Alcon-Camas, M.

Ania-Castañón, J. D.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
[CrossRef] [PubMed]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15(25), 16690–16695 (2007).
[CrossRef] [PubMed]

T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
[CrossRef]

J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004).
[CrossRef] [PubMed]

Ania-Castañón, J.-D.

Atkins, S.

Babin, S. A.

Bekker, A.

Boncristiano, E. S.

E. S. Boncristiano, L. A. M. Saito, and E. A. De Souza, “396 fs pulse from an asynchronous mode-locked Erbium fiber laser with 2.5-12 GHz repetition rate,” Microw. Opt. Technol. Lett.50(11), 2994–2996 (2008).
[CrossRef]

Chen, X.

T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
[CrossRef]

Churkin, D.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
[CrossRef] [PubMed]

De Souza, E. A.

E. S. Boncristiano, L. A. M. Saito, and E. A. De Souza, “396 fs pulse from an asynchronous mode-locked Erbium fiber laser with 2.5-12 GHz repetition rate,” Microw. Opt. Technol. Lett.50(11), 2994–2996 (2008).
[CrossRef]

Desurvire, E. B.

Ellingham, T. J.

T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
[CrossRef]

El-Taher, A. E.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
[CrossRef] [PubMed]

M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J.-D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett.34(20), 3104–3106 (2009).
[CrossRef] [PubMed]

Fischer, B.

Gordon, J. P.

Harper, P.

Harrison, J. A.

Ibbotson, R.

T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
[CrossRef]

Kablukov, S. I.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
[CrossRef] [PubMed]

Karalekas, V.

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser - Part I: Theory,” IEEE J. Quantum Electron.6(11), 694–708 (1970).
[CrossRef]

Mezentsev, V. K.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
[CrossRef] [PubMed]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

Mollenauer, L. F.

Nakazawa, M.

Podivilov, E. V.

Romero, M. A.

L. A. M. Saito, M. A. Romero, and E. A. Souza, “48.8 km Ultralong Erbium fiber laser in active mode-locking operation,” Opt. Rev.17(4), 385–387 (2010).
[CrossRef]

Saito, L. A. M.

L. A. M. Saito, M. A. Romero, and E. A. Souza, “48.8 km Ultralong Erbium fiber laser in active mode-locking operation,” Opt. Rev.17(4), 385–387 (2010).
[CrossRef]

E. S. Boncristiano, L. A. M. Saito, and E. A. De Souza, “396 fs pulse from an asynchronous mode-locked Erbium fiber laser with 2.5-12 GHz repetition rate,” Microw. Opt. Technol. Lett.50(11), 2994–2996 (2008).
[CrossRef]

L. A. M. Saito and E. A. Thoroh de Souza, “Identifying the mechanisms of pulse formation and evolution in actively mode-locked Erbium fiber lasers with meters and kilometers-long,” Opt. Express (Submitted for publication).

Scheuer, J.

Sendowski, J.

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser - Part I: Theory,” IEEE J. Quantum Electron.6(11), 694–708 (1970).
[CrossRef]

Souza, E. A.

L. A. M. Saito, M. A. Romero, and E. A. Souza, “48.8 km Ultralong Erbium fiber laser in active mode-locking operation,” Opt. Rev.17(4), 385–387 (2010).
[CrossRef]

Stolen, R. H.

Thoroh de Souza, E. A.

L. A. M. Saito and E. A. Thoroh de Souza, “Identifying the mechanisms of pulse formation and evolution in actively mode-locked Erbium fiber lasers with meters and kilometers-long,” Opt. Express (Submitted for publication).

Tokuda, M.

Tomlinson, W. J.

Turitsyn, S. K.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
[CrossRef] [PubMed]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15(25), 16690–16695 (2007).
[CrossRef] [PubMed]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
[CrossRef]

Uchida, N.

Vodonos, B.

Wang, H.

Yariv, A.

Zadok, A.

Zhang, L.

T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
[CrossRef]

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser - Part I: Theory,” IEEE J. Quantum Electron.6(11), 694–708 (1970).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Microw. Opt. Technol. Lett. (1)

E. S. Boncristiano, L. A. M. Saito, and E. A. De Souza, “396 fs pulse from an asynchronous mode-locked Erbium fiber laser with 2.5-12 GHz repetition rate,” Microw. Opt. Technol. Lett.50(11), 2994–2996 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Opt. Rev. (1)

L. A. M. Saito, M. A. Romero, and E. A. Souza, “48.8 km Ultralong Erbium fiber laser in active mode-locking operation,” Opt. Rev.17(4), 385–387 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett.97(14), 140502 (2006).
[CrossRef] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009).
[CrossRef] [PubMed]

Other (4)

O. Kotlicki and J. Scheuer, “Secure key distribution over a 200 km long link employing a novel Ultra-long Fiber Lasers (UFL) scheme,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper ATuA4.

H. G. Rosa and E. A. de Souza, “58 kHz Ultra-low Repetition Rate Ultralong Erbium-Doped Fiber Laser Mode-Locked by Carbon Nanotubes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2011), paper JWA29.

M. Silva, T. C. Carvalho, R. M. Silveira, G. M. Ferreira, W. V. Ruggiero, H. L. Fragnito, H. Waldmann, C. Ruggiero, and L. F. Lopez, “Fiber-based testbed architecture enabling advanced experimental research,” in 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities, IEEE, 246–253 (2006).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the 50 km ultralong Erbium fiber lasers (a) in-laboratory and (b) in-field by the use of KyaTera network installed in the Sao Paulo city connecting Mackenzie University and University of Sao Paulo.

Fig. 2
Fig. 2

(a) Average output power of the ultralong Erbium fiber laser by using spools in laboratory and by using the KyaTera network. (b) Output spectrum in both cases: in-lab setup and KyaTera network.

Fig. 3
Fig. 3

(a) Output pulse widths at modulation frequency of 1 GHz in actively mode-locking regime: In-laboratory (blue curve) and In-field fiber laser (red curve). (b) Output spectra at the modulation frequency of 1 GHz in actively mode-locking regime: In-laboratory (blue curve) and In-field fiber laser (red curve).

Fig. 4
Fig. 4

Output pulse width as function of modulation frequency for in-laboratory (blue curve) and in-field (red curve) laser.

Fig. 5
Fig. 5

Intracavity and soliton peak power versus modulation frequency for (a) In-lab and (b) In-field fiber laser.

Fig. 6
Fig. 6

Output spectra of the in-laboratory laser with modulation frequency varying from 1 to 10 GHz (span of 1 nm).

Fig. 7
Fig. 7

Output spectra of in-field laser with modulation frequencies varying from 1 to 10 GHz (span of 1 nm).

Fig. 8
Fig. 8

(a) Pulse width and (b) Spectrum at the modulation frequency of 1 GHz after 25 km of SMF for in-laboratory laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 0 = 3.11 λ 2 | D ave | 2πcγ τ FWHM 2
Z 0 = 0.322 π 2 c τ FWHM 2 λ 2 | D ave |

Metrics