Abstract

Polarization-insensitive guided-mode resonance (GMR) filters have significant role in applications such as optical communication systems. Here, we report the design and fabrication of two types of simple-structured one-dimensional (1D) GMR gratings with non-polarizing resonance properties under normal incidence. A single-layer rectangular-profile TiO2 grating is fabricated by electron beam lithography and reactive ion etching, which demonstrates, for the first time in experiment, almost perfect non-polarizing filtering effect with 1D grating under normal incidence. Then, a TiO2-coated polycarbonate 1D GMR grating is fabricated by nanoimprinting and atomic layer deposition, which also exhibits good non-polarizing property and the potential of low-cost mass replication of such functional devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE. J. Quantum Electron.33, 2038–2059 (1997).
    [CrossRef]
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32, 2606–2613 (1993).
    [CrossRef] [PubMed]
  3. D. Lacour, G. Granet, J-P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one dimensional grating in conical mounting,” J. Opt. Soc. Am. A.20, 1546–1552 (2003).
    [CrossRef]
  4. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
    [CrossRef]
  5. P. Karvinen, T. Nuutinen, J. Rahomäki, O. Hyvärinen, and P. Vahimaa, “Strong fluorescence-signal gain with single-excitation-enhancing and emission-directing nanostructured diffraction grating,” Opt. Lett.34, 3208–3210 (2009).
    [CrossRef] [PubMed]
  6. G. Niederer, W. Nakagawa, and H. P. Herzig, “Design and characterization of a tunable polarization-independent resonanct grating filter,” Opt. Express13, 2196–2200 (2005).
    [CrossRef] [PubMed]
  7. D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, “Demonstration of polarization-independent resonant subwavelength grating filter arrays,” Opt. Lett.35, 3201–3203 (2010).
    [CrossRef] [PubMed]
  8. A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett.86, 121105 (2005).
    [CrossRef]
  9. T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett.36, 2411–2413 (2011).
    [CrossRef] [PubMed]
  10. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14, 2758–2767 (1997).
    [CrossRef]
  11. D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Opt.43, 6157–6165 (2004).
    [CrossRef] [PubMed]
  12. T. Clausnitzer, A. V. Tishchenko, E. B. Kley, J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband, polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A22, 2799–2803 (2005).
    [CrossRef]
  13. M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

2012

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

2011

2010

2009

2005

2004

2003

D. Lacour, G. Granet, J-P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one dimensional grating in conical mounting,” J. Opt. Soc. Am. A.20, 1546–1552 (2003).
[CrossRef]

2002

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
[CrossRef]

1997

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE. J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14, 2758–2767 (1997).
[CrossRef]

1993

Alasaarela, T.

Baets, R.

Bai, B.

Boye, R. R.

Carter, T. R.

Clausnitzer, T.

Cunningham, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
[CrossRef]

Delbeke, D.

Fehrembach, A.-L.

A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett.86, 121105 (2005).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE. J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

Fuchs, J.

Granet, G.

D. Lacour, G. Granet, J-P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one dimensional grating in conical mounting,” J. Opt. Soc. Am. A.20, 1546–1552 (2003).
[CrossRef]

Herzig, H. P.

Honkanen, S.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett.36, 2411–2413 (2011).
[CrossRef] [PubMed]

Huang, L.

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
[CrossRef]

Hyvärinen, O.

Karvinen, P.

Kellogg, R. A.

Kemme, S. A.

Khan, M. B.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

Khan, Z. M.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

Kley, E. B.

Kroll, U.

Kuittinen, M.

Lacour, D.

D. Lacour, G. Granet, J-P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one dimensional grating in conical mounting,” J. Opt. Soc. Am. A.20, 1546–1552 (2003).
[CrossRef]

Li, L.

Li, P.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
[CrossRef]

Lin, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
[CrossRef]

Magnusson, R.

Mure-Ravaud, A.

D. Lacour, G. Granet, J-P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one dimensional grating in conical mounting,” J. Opt. Soc. Am. A.20, 1546–1552 (2003).
[CrossRef]

Muys, P.

Nakagawa, W.

Niederer, G.

Nuutinen, T.

Parriaux, O.

Pepper, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
[CrossRef]

Peters, D. W.

Plumey, J-P.

D. Lacour, G. Granet, J-P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one dimensional grating in conical mounting,” J. Opt. Soc. Am. A.20, 1546–1552 (2003).
[CrossRef]

Priimagi, A.

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
[CrossRef]

Rahomäki, J.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE. J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

Saleem, M. R.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

Samora, S.

Schelle, D.

Sentenac, A.

A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett.86, 121105 (2005).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE. J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

Stenberg, P. A.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

Tervonen, A.

Tishchenko, A. V.

Turunen, J.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett.36, 2411–2413 (2011).
[CrossRef] [PubMed]

Vahimaa, P.

Wang, S. S.

Wendt, J. R.

Zheng, D.

Appl. Opt.

Appl. Phys. Lett.

A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett.86, 121105 (2005).
[CrossRef]

IEEE. J. Quantum Electron.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE. J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Micro/Nanolith. MEMS MOEMS11, 013007 (2012).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A.

D. Lacour, G. Granet, J-P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one dimensional grating in conical mounting,” J. Opt. Soc. Am. A.20, 1546–1552 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators85, 219–226 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the (a) Type-I and (b) Type-II 1D non-polarizing GMR gratings.

Fig. 2
Fig. 2

Numerically calculated TE and TM transmittance T and reflectance R of the optimized GMR gratings. (a) Type-I GMR grating with d = 540 nm, w = 395 nm, and h = 195 nm. (b) Type-II GMR grating with d = 540 nm, w = 200 nm, h = 145 nm, and t = 60 nm.

Fig. 3
Fig. 3

Schematic of the fabrication process of the Type-I GMR grating.

Fig. 4
Fig. 4

SEM images of the fabricated GMR gratings. (a) The Type-I TiO2 GMR grating on a SiO2 substrate. (b), (c) and (d) are the master stamp of HSQ on a Si substrate, the replicated polycarbonate grating, and the final TiO2-coated Type-II GMR grating, respectively.

Fig. 5
Fig. 5

Measured transmittance spectra of the fabricated (a) Type-I and (b) Type-II GMR grating samples, demonstrating the non-polarizing GMR effect under normal incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) = 1 + A λ 2 λ 2 B ,

Metrics