Abstract

A combination method of frequency domain photon migration (FDPM) and gas in scattering media absorption spectroscopy (GASMAS) is used for assessment of the mean optical path length (MOPL) and the gas absorption in gas-filled porous media, respectively. Polystyrene (PS) foams, with extremely high physical porosity, are utilized as sample materials for proof-of-principle demonstration. The optical porosity, defined as the ratio between the path length through the pores and the path length through the medium, is evaluated in PS foam and found consistent with the measured physical porosity. The method was also utilized for the study of balsa and spruce wood samples.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Daniel, K. L. McNesby, and A. W. Miziolek, “Application of tunable diode laser diagnostics for temperature and species concentration profiles of inhibited low-pressure flames,” Appl. Opt.35(21), 4018–4025 (1996).
    [CrossRef] [PubMed]
  2. A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol.17(1), 139–144 (2006).
    [CrossRef]
  3. H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996).
    [CrossRef]
  4. G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg, “Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy,” Appl. Opt.44(24), 5148–5151 (2005).
    [CrossRef] [PubMed]
  5. A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath,” Int. J. Environ. an. Ch.85(12-13), 1001–1012 (2005).
    [CrossRef]
  6. P. C. Kamat, C. B. Roller, K. Namjou, J. D. Jeffers, A. Faramarzalian, R. Salas, and P. J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer,” Appl. Opt.46(19), 3969–3975 (2007).
    [CrossRef] [PubMed]
  7. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta [A]54(2), 197–236 (1998).
    [CrossRef]
  8. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett.26(1), 16–18 (2001).
    [CrossRef] [PubMed]
  9. M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008).
    [CrossRef]
  10. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express14(8), 3641–3653 (2006).
    [CrossRef] [PubMed]
  11. M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express17(13), 10849–10863 (2009).
    [CrossRef] [PubMed]
  12. T. Svensson and Z. J. Shen, “Laser spectroscopy of gas confined in nanoporous materials,” Appl. Phys. Lett.96(2), 021107 (2010).
    [CrossRef]
  13. T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express18(16), 16460–16473 (2010).
    [CrossRef] [PubMed]
  14. W. Becker, Advanced time-correlated single photon counting techniques. (Springer-Verlag, Berlin, Heidelgerg, 2005).
  15. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
    [CrossRef] [PubMed]
  16. G. Somesfalean, M. Sjöholm, J. Alnis, C. Klinteberg, S. Andersson-Engels, and S. Svanberg, “Concentration measurement of gas embedded in scattering media by employing absorption and time-resolved laser spectroscopy,” Appl. Opt.41(18), 3538–3544 (2002).
    [CrossRef] [PubMed]
  17. T. Svensson, E. Alerstam, J. Johansson, and S. Andersson-Engels, “Optical porosimetry and investigations of the porosity experienced by light interacting with porous media,” Opt. Lett.35(11), 1740–1742 (2010).
    [CrossRef] [PubMed]
  18. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
    [CrossRef]
  19. T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011).
    [CrossRef] [PubMed]
  20. L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
    [CrossRef] [PubMed]
  21. J. K. Link, “Measurement of radiative lifetimes of first excited states of Na, K, Rb, and Cs by means of phase-shift method,” J. Opt. Soc. Am.56(9), 1195–1199 (1966).
    [CrossRef]
  22. G. Jönsson, C. Levinson, and S. Svanberg, “Natural radiative lifetimes and Stark-shift parameters in the 4p2 configuration in Ca I,” Phys. Scr.30(1), 65–69 (1984).
    [CrossRef]
  23. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
    [CrossRef] [PubMed]
  24. S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review,” Med. Eng. Phys.31(5), 495–509 (2009).
    [CrossRef] [PubMed]
  25. Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum.73(2), 383–393 (2002).
    [CrossRef]
  26. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
    [CrossRef] [PubMed]
  27. R. Coquard and D. Baillis, “Modeling of heat transfer in low-density EPS foams,” J. Heat Trans.128(6), 538–549 (2006).
    [CrossRef]
  28. J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B77, 691–695 (2003).
    [CrossRef]
  29. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998).
    [CrossRef]
  30. Y. S. Yang, H. L. Liu, X. D. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng.36(5), 1562–1569 (1997).
    [CrossRef]
  31. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt.38(27), 5803–5815 (1999).
    [CrossRef] [PubMed]
  32. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B75(2-3), 229–236 (2002).
    [CrossRef]
  33. M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum.78(11), 113107 (2007).
    [CrossRef] [PubMed]
  34. M. Yamauchi, Y. Yamada, and Y. Hasegawa, “Frequency-domain measurements of diffusing photon propagation in solid phantoms,” Opt. Rev.4(5), 620–621 (1997).
    [CrossRef]
  35. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997).
    [CrossRef] [PubMed]
  36. L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B DOI 10.1007/s00340-00012-05103-00349 (2012).
  37. N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum.69(8), 3042–3054 (1998).
    [CrossRef]
  38. K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum.71(5), 2191–2195 (2000).
    [CrossRef]
  39. S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum.72(4), 1984–1987 (2001).
    [CrossRef]
  40. J. Carlsson, P. Hellentin, L. Malmqvist, A. Persson, W. Persson, and C. G. Wahlström, “Time-resolved studies of light propagation in paper,” Appl. Opt.34(9), 1528–1535 (1995).
    [CrossRef] [PubMed]
  41. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
    [CrossRef]
  42. J. M. Dinwoodie, Timber; Its Nature and Behaviour 2 ed. (Spon Press, 2000).
  43. C. Roger, Pettersen, “The chemical composition of wood,” in The Chemistry of Solid Wood edited by Roger Rowell (American Chemical Society, 1984), 207, 57–126.
  44. Z. C. Pu, “Polystyrene,” in Polymer Data Handbook edited by James E. Mark (Oxford University, New York, 2009).
  45. A. Da Silva and S. Kyriakides, “Compressive response and failure of balsa wood,” Int. J. Solids Struct.44(25-26), 8685–8717 (2007).
    [CrossRef]
  46. J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
    [CrossRef]
  47. K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
    [CrossRef] [PubMed]

2012

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B DOI 10.1007/s00340-00012-05103-00349 (2012).

2011

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011).
[CrossRef] [PubMed]

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

2010

2009

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express17(13), 10849–10863 (2009).
[CrossRef] [PubMed]

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review,” Med. Eng. Phys.31(5), 495–509 (2009).
[CrossRef] [PubMed]

2008

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008).
[CrossRef]

2007

P. C. Kamat, C. B. Roller, K. Namjou, J. D. Jeffers, A. Faramarzalian, R. Salas, and P. J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer,” Appl. Opt.46(19), 3969–3975 (2007).
[CrossRef] [PubMed]

M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum.78(11), 113107 (2007).
[CrossRef] [PubMed]

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

A. Da Silva and S. Kyriakides, “Compressive response and failure of balsa wood,” Int. J. Solids Struct.44(25-26), 8685–8717 (2007).
[CrossRef]

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

2006

R. Coquard and D. Baillis, “Modeling of heat transfer in low-density EPS foams,” J. Heat Trans.128(6), 538–549 (2006).
[CrossRef]

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol.17(1), 139–144 (2006).
[CrossRef]

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express14(8), 3641–3653 (2006).
[CrossRef] [PubMed]

2005

2003

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B77, 691–695 (2003).
[CrossRef]

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

2002

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B75(2-3), 229–236 (2002).
[CrossRef]

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum.73(2), 383–393 (2002).
[CrossRef]

G. Somesfalean, M. Sjöholm, J. Alnis, C. Klinteberg, S. Andersson-Engels, and S. Svanberg, “Concentration measurement of gas embedded in scattering media by employing absorption and time-resolved laser spectroscopy,” Appl. Opt.41(18), 3538–3544 (2002).
[CrossRef] [PubMed]

2001

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett.26(1), 16–18 (2001).
[CrossRef] [PubMed]

S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum.72(4), 1984–1987 (2001).
[CrossRef]

2000

K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum.71(5), 2191–2195 (2000).
[CrossRef]

1999

1998

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum.69(8), 3042–3054 (1998).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998).
[CrossRef]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta [A]54(2), 197–236 (1998).
[CrossRef]

1997

Y. S. Yang, H. L. Liu, X. D. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng.36(5), 1562–1569 (1997).
[CrossRef]

M. Yamauchi, Y. Yamada, and Y. Hasegawa, “Frequency-domain measurements of diffusing photon propagation in solid phantoms,” Opt. Rev.4(5), 620–621 (1997).
[CrossRef]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

1996

R. G. Daniel, K. L. McNesby, and A. W. Miziolek, “Application of tunable diode laser diagnostics for temperature and species concentration profiles of inhibited low-pressure flames,” Appl. Opt.35(21), 4018–4025 (1996).
[CrossRef] [PubMed]

H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996).
[CrossRef]

1995

1992

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

1984

G. Jönsson, C. Levinson, and S. Svanberg, “Natural radiative lifetimes and Stark-shift parameters in the 4p2 configuration in Ca I,” Phys. Scr.30(1), 65–69 (1984).
[CrossRef]

1966

Adolfsson, E.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011).
[CrossRef] [PubMed]

Alerstam, E.

T. Svensson, E. Alerstam, J. Johansson, and S. Andersson-Engels, “Optical porosimetry and investigations of the porosity experienced by light interacting with porous media,” Opt. Lett.35(11), 1740–1742 (2010).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

Alford, K.

K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum.71(5), 2191–2195 (2000).
[CrossRef]

Alnis, J.

Anderson, B.

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B77, 691–695 (2003).
[CrossRef]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Andersson, M.

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum.78(11), 113107 (2007).
[CrossRef] [PubMed]

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express14(8), 3641–3653 (2006).
[CrossRef] [PubMed]

Andersson-Engels, S.

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B DOI 10.1007/s00340-00012-05103-00349 (2012).

T. Svensson, E. Alerstam, J. Johansson, and S. Andersson-Engels, “Optical porosimetry and investigations of the porosity experienced by light interacting with porous media,” Opt. Lett.35(11), 1740–1742 (2010).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

G. Somesfalean, M. Sjöholm, J. Alnis, C. Klinteberg, S. Andersson-Engels, and S. Svanberg, “Concentration measurement of gas embedded in scattering media by employing absorption and time-resolved laser spectroscopy,” Appl. Opt.41(18), 3538–3544 (2002).
[CrossRef] [PubMed]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett.26(1), 16–18 (2001).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Axner, O.

Baillis, D.

R. Coquard and D. Baillis, “Modeling of heat transfer in low-density EPS foams,” J. Heat Trans.128(6), 538–549 (2006).
[CrossRef]

Bangrazi, C.

A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath,” Int. J. Environ. an. Ch.85(12-13), 1001–1012 (2005).
[CrossRef]

Baumann, W. T.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol.17(1), 139–144 (2006).
[CrossRef]

Bergamaschi, P.

H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996).
[CrossRef]

Bret, B. P. J.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Carlsson, J.

Chance, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998).
[CrossRef]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum.69(8), 3042–3054 (1998).
[CrossRef]

Y. S. Yang, H. L. Liu, X. D. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng.36(5), 1562–1569 (1997).
[CrossRef]

Contini, D.

Cope, M.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998).
[CrossRef]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Coquard, R.

R. Coquard and D. Baillis, “Modeling of heat transfer in low-density EPS foams,” J. Heat Trans.128(6), 538–549 (2006).
[CrossRef]

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Da Silva, A.

A. Da Silva and S. Kyriakides, “Compressive response and failure of balsa wood,” Int. J. Solids Struct.44(25-26), 8685–8717 (2007).
[CrossRef]

Daniel, R. G.

Dau, D. H.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Delpy, D. T.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Du, C.

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum.69(8), 3042–3054 (1998).
[CrossRef]

Ebert, V.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B75(2-3), 229–236 (2002).
[CrossRef]

Edner, H.

Erickson, S. J.

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review,” Med. Eng. Phys.31(5), 495–509 (2009).
[CrossRef] [PubMed]

Faramarzalian, A.

Fernholz, T.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B75(2-3), 229–236 (2002).
[CrossRef]

Fischer, H.

H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996).
[CrossRef]

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Folestad, S.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

Giubileo, G.

A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath,” Int. J. Environ. an. Ch.85(12-13), 1001–1012 (2005).
[CrossRef]

Godavarty, A.

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review,” Med. Eng. Phys.31(5), 495–509 (2009).
[CrossRef] [PubMed]

Gratton, E.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998).
[CrossRef]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Guan, Z. G.

M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express17(13), 10849–10863 (2009).
[CrossRef] [PubMed]

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008).
[CrossRef]

Gustafsson, U.

Harris, G. W.

H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996).
[CrossRef]

Hasegawa, Y.

M. Yamauchi, Y. Yamada, and Y. Hasegawa, “Frequency-domain measurements of diffusing photon propagation in solid phantoms,” Opt. Rev.4(5), 620–621 (1997).
[CrossRef]

Hellentin, P.

Hendricks, A. G.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol.17(1), 139–144 (2006).
[CrossRef]

Hijmans, T. W.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Huang, Y. Q.

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum.73(2), 383–393 (2002).
[CrossRef]

Imhof, A.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Jayaweera, H.

Jeffers, J. D.

Johansson, J.

T. Svensson, E. Alerstam, J. Johansson, and S. Andersson-Engels, “Optical porosimetry and investigations of the porosity experienced by light interacting with porous media,” Opt. Lett.35(11), 1740–1742 (2010).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

Johnson, P. M.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Jönsson, G.

G. Jönsson, C. Levinson, and S. Svanberg, “Natural radiative lifetimes and Stark-shift parameters in the 4p2 configuration in Ca I,” Phys. Scr.30(1), 65–69 (1984).
[CrossRef]

Kamat, P. C.

Kanoda, T.

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Kawaguchi, M.

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

Khoptyar, D.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

Klinteberg, C.

Kluczynski, P.

Kuro, M.

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

Kyriakides, S.

A. Da Silva and S. Kyriakides, “Compressive response and failure of balsa wood,” Int. J. Solids Struct.44(25-26), 8685–8717 (2007).
[CrossRef]

Lagendijk, A.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Levinson, C.

G. Jönsson, C. Levinson, and S. Svanberg, “Natural radiative lifetimes and Stark-shift parameters in the 4p2 configuration in Ca I,” Phys. Scr.30(1), 65–69 (1984).
[CrossRef]

Lewander, M.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011).
[CrossRef] [PubMed]

T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express18(16), 16460–16473 (2010).
[CrossRef] [PubMed]

M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express17(13), 10849–10863 (2009).
[CrossRef] [PubMed]

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008).
[CrossRef]

Li, X. D.

Y. S. Yang, H. L. Liu, X. D. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng.36(5), 1562–1569 (1997).
[CrossRef]

Link, J. K.

Liu, H. L.

Y. S. Yang, H. L. Liu, X. D. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng.36(5), 1562–1569 (1997).
[CrossRef]

Lundin, P.

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B DOI 10.1007/s00340-00012-05103-00349 (2012).

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

Ma, H. Y.

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum.69(8), 3042–3054 (1998).
[CrossRef]

Malmqvist, L.

Martelli, F.

McCann, P. J.

McNesby, K. L.

Mei, L.

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B DOI 10.1007/s00340-00012-05103-00349 (2012).

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

Miziolek, A. W.

Morgan, S. P.

S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum.72(4), 1984–1987 (2001).
[CrossRef]

Namjou, K.

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Nishizawa, M.

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

Ohnishi, Y.

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

Okuno, T.

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

Olsson, A.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008).
[CrossRef]

Persson, A.

Persson, L.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008).
[CrossRef]

M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum.78(11), 113107 (2007).
[CrossRef] [PubMed]

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express14(8), 3641–3653 (2006).
[CrossRef] [PubMed]

Persson, W.

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Puiu, A.

A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath,” Int. J. Environ. an. Ch.85(12-13), 1001–1012 (2005).
[CrossRef]

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998).
[CrossRef]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum.69(8), 3042–3054 (1998).
[CrossRef]

Rippe, L.

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

Rivas, J. G.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Roller, C. B.

Salas, R.

Saunders, W. R.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol.17(1), 139–144 (2006).
[CrossRef]

Sevick-Muraca, E. M.

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum.73(2), 383–393 (2002).
[CrossRef]

Shen, Z. J.

T. Svensson and Z. J. Shen, “Laser spectroscopy of gas confined in nanoporous materials,” Appl. Phys. Lett.96(2), 021107 (2010).
[CrossRef]

Sjöholm, M.

Somesfalean, G.

Sprik, R.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Sun, Z. G.

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum.73(2), 383–393 (2002).
[CrossRef]

Svanberg, K.

Svanberg, S.

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B DOI 10.1007/s00340-00012-05103-00349 (2012).

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011).
[CrossRef] [PubMed]

T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express18(16), 16460–16473 (2010).
[CrossRef] [PubMed]

M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express17(13), 10849–10863 (2009).
[CrossRef] [PubMed]

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008).
[CrossRef]

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum.78(11), 113107 (2007).
[CrossRef] [PubMed]

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express14(8), 3641–3653 (2006).
[CrossRef] [PubMed]

G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg, “Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy,” Appl. Opt.44(24), 5148–5151 (2005).
[CrossRef] [PubMed]

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B77, 691–695 (2003).
[CrossRef]

G. Somesfalean, M. Sjöholm, J. Alnis, C. Klinteberg, S. Andersson-Engels, and S. Svanberg, “Concentration measurement of gas embedded in scattering media by employing absorption and time-resolved laser spectroscopy,” Appl. Opt.41(18), 3538–3544 (2002).
[CrossRef] [PubMed]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett.26(1), 16–18 (2001).
[CrossRef] [PubMed]

G. Jönsson, C. Levinson, and S. Svanberg, “Natural radiative lifetimes and Stark-shift parameters in the 4p2 configuration in Ca I,” Phys. Scr.30(1), 65–69 (1984).
[CrossRef]

Svensson, T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, J. Johansson, and S. Andersson-Engels, “Optical porosimetry and investigations of the porosity experienced by light interacting with porous media,” Opt. Lett.35(11), 1740–1742 (2010).
[CrossRef] [PubMed]

T. Svensson and Z. J. Shen, “Laser spectroscopy of gas confined in nanoporous materials,” Appl. Phys. Lett.96(2), 021107 (2010).
[CrossRef]

T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express18(16), 16460–16473 (2010).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express17(13), 10849–10863 (2009).
[CrossRef] [PubMed]

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum.78(11), 113107 (2007).
[CrossRef] [PubMed]

Teichert, H.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B75(2-3), 229–236 (2002).
[CrossRef]

Tromberg, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998).
[CrossRef]

Tromberg, B. J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Vandsburger, U.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol.17(1), 139–144 (2006).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Wahlström, C. G.

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta [A]54(2), 197–236 (1998).
[CrossRef]

Wickramasinghe, Y.

K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum.71(5), 2191–2195 (2000).
[CrossRef]

Wienhold, F. G.

H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996).
[CrossRef]

Xu, C. T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011).
[CrossRef] [PubMed]

Yamada, Y.

M. Yamauchi, Y. Yamada, and Y. Hasegawa, “Frequency-domain measurements of diffusing photon propagation in solid phantoms,” Opt. Rev.4(5), 620–621 (1997).
[CrossRef]

Yamauchi, M.

M. Yamauchi, Y. Yamada, and Y. Hasegawa, “Frequency-domain measurements of diffusing photon propagation in solid phantoms,” Opt. Rev.4(5), 620–621 (1997).
[CrossRef]

Yang, Y. S.

Y. S. Yang, H. L. Liu, X. D. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng.36(5), 1562–1569 (1997).
[CrossRef]

Yong, K. Y.

S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum.72(4), 1984–1987 (2001).
[CrossRef]

Yoshitani, K.

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

Zaccanti, G.

Zenker, T.

H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996).
[CrossRef]

Anesth. Analg.

K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007).
[CrossRef] [PubMed]

Appl. Opt.

J. Carlsson, P. Hellentin, L. Malmqvist, A. Persson, W. Persson, and C. G. Wahlström, “Time-resolved studies of light propagation in paper,” Appl. Opt.34(9), 1528–1535 (1995).
[CrossRef] [PubMed]

R. G. Daniel, K. L. McNesby, and A. W. Miziolek, “Application of tunable diode laser diagnostics for temperature and species concentration profiles of inhibited low-pressure flames,” Appl. Opt.35(21), 4018–4025 (1996).
[CrossRef] [PubMed]

G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg, “Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy,” Appl. Opt.44(24), 5148–5151 (2005).
[CrossRef] [PubMed]

P. C. Kamat, C. B. Roller, K. Namjou, J. D. Jeffers, A. Faramarzalian, R. Salas, and P. J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer,” Appl. Opt.46(19), 3969–3975 (2007).
[CrossRef] [PubMed]

G. Somesfalean, M. Sjöholm, J. Alnis, C. Klinteberg, S. Andersson-Engels, and S. Svanberg, “Concentration measurement of gas embedded in scattering media by employing absorption and time-resolved laser spectroscopy,” Appl. Opt.41(18), 3538–3544 (2002).
[CrossRef] [PubMed]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt.38(27), 5803–5815 (1999).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997).
[CrossRef] [PubMed]

Appl. Phys. B

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B DOI 10.1007/s00340-00012-05103-00349 (2012).

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B75(2-3), 229–236 (2002).
[CrossRef]

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B77, 691–695 (2003).
[CrossRef]

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008).
[CrossRef]

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008).
[CrossRef]

Appl. Phys. Lett.

T. Svensson and Z. J. Shen, “Laser spectroscopy of gas confined in nanoporous materials,” Appl. Phys. Lett.96(2), 021107 (2010).
[CrossRef]

Int. J. Environ. an. Ch.

A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath,” Int. J. Environ. an. Ch.85(12-13), 1001–1012 (2005).
[CrossRef]

Int. J. Solids Struct.

A. Da Silva and S. Kyriakides, “Compressive response and failure of balsa wood,” Int. J. Solids Struct.44(25-26), 8685–8717 (2007).
[CrossRef]

J. Heat Trans.

R. Coquard and D. Baillis, “Modeling of heat transfer in low-density EPS foams,” J. Heat Trans.128(6), 538–549 (2006).
[CrossRef]

J. Opt. Soc. Am.

Meas. Sci. Technol.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol.17(1), 139–144 (2006).
[CrossRef]

Med. Eng. Phys.

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review,” Med. Eng. Phys.31(5), 495–509 (2009).
[CrossRef] [PubMed]

Opt. Commun.

J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003).
[CrossRef]

Opt. Eng.

Y. S. Yang, H. L. Liu, X. D. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng.36(5), 1562–1569 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Opt. Rev.

M. Yamauchi, Y. Yamada, and Y. Hasegawa, “Frequency-domain measurements of diffusing photon propagation in solid phantoms,” Opt. Rev.4(5), 620–621 (1997).
[CrossRef]

Philos. Trans. R. Soc. Lond. B Biol. Sci.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011).
[CrossRef] [PubMed]

Phys. Scr.

G. Jönsson, C. Levinson, and S. Svanberg, “Natural radiative lifetimes and Stark-shift parameters in the 4p2 configuration in Ca I,” Phys. Scr.30(1), 65–69 (1984).
[CrossRef]

Rev. Sci. Instrum.

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum.73(2), 383–393 (2002).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998).
[CrossRef]

M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum.78(11), 113107 (2007).
[CrossRef] [PubMed]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum.69(8), 3042–3054 (1998).
[CrossRef]

K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum.71(5), 2191–2195 (2000).
[CrossRef]

S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum.72(4), 1984–1987 (2001).
[CrossRef]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

Spectrochim. Acta [A]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta [A]54(2), 197–236 (1998).
[CrossRef]

SPIE

H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996).
[CrossRef]

Other

W. Becker, Advanced time-correlated single photon counting techniques. (Springer-Verlag, Berlin, Heidelgerg, 2005).

J. M. Dinwoodie, Timber; Its Nature and Behaviour 2 ed. (Spon Press, 2000).

C. Roger, Pettersen, “The chemical composition of wood,” in The Chemistry of Solid Wood edited by Roger Rowell (American Chemical Society, 1984), 207, 57–126.

Z. C. Pu, “Polystyrene,” in Polymer Data Handbook edited by James E. Mark (Oxford University, New York, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup scheme: the rectangular dotted components are for the FDPM measurements and the rectangular rounded components are for the GASMAS measurements. The two subsystems can be switched manually.

Fig. 2
Fig. 2

Measurement geometry and parameters illustration of the extrapolated boundary condition.

Fig. 3
Fig. 3

Simulation results: Phase shift vs modulation frequency (dot); Δϕ'=2π f 0 L m /c (dashed line). The optical properties used in the simulation ( μ s ' = 3410, μ a = 0.17 and n sm = 1.01) are typical values for PS foam. The sample thickness is 30 mm, and the source-detector separation ( ξ ) is 0.

Fig. 4
Fig. 4

Recorded raw signals: the reference signal is sampled from the RF source directly, the instrument response is detected without any sample, while the scattered light signal is detected after the sample.

Fig. 5
Fig. 5

Recorded phase shifts at 5, 10, 20, 30, 40 and 50 MHz modulation frequency for PS foams. The dashed lines are the fittings of the recorded phase shifts, n sm = 1.01.

Fig. 6
Fig. 6

Recorded phase shifts at 5, 10, 20, 30, 40 and 50 MHz modulation frequency for balsa (10.3 mm) and spruce (8.6 mm) wood samples. The dashed lines are the fittings of the recorded phase shifts, n sm = 1.40.

Tables (3)

Tables Icon

Table 1 Optical properties and the MOPL of PS foam samples as calculated from the fitting procedure and by using a 10-MHz modulation frequency, n sm =1.01.

Tables Icon

Table 2 Path lengths through the gas-filled pores ( L gas ), physical path lengths ( L physical ) through the medium, as well as optical and physical porosities of PS foams, n solid = 1.58.

Tables Icon

Table 3 Optical properties, MOPLs, path lengths through the gas-filled pores ( L gas ), physical path lengths ( L physical ) through the medium, optical and physical porosities of a balsa (10.3 mm) and a spruce (8.6 mm) samples, n sm = 1.40 and n solid = 1.47.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

G slab (ξ, z 0 , f 0 ,t')= e i2π f 0 t' (2π) 3/2 m= [ (d z +m ) ρ +m 3 (1+α ρ +m ) e α ρ +m (d z m ) ρ m 3 (1+α ρ m ) e α ρ m ] .
{ z +,m =2md+4m z b + z 0 z ,m =2md+(4m2) z b z 0 ,
ρ ±m = ξ 2 + (d z ±,m ) 2 ,
α= ( μ a c'+i2π f 0 )/Dc' .
T(τ)= c' 2 (4πD) 3/2 (c'τ) 5/2 exp( μ a c'τ)exp( ξ 2 4Dc'τ ) m= + { (d z +,m )exp[ (d z +,m ) 2 4Dc'τ ](d z ,m )exp[ (d z ,m ) 2 4Dc'τ ] } .
L m = n sm c' T(τ)τdτ/ T(τ)τdτ .
Δϕ'=2π f 0 L m /c.
S(t)= p 0 + p 1 t+ p 2 t 2 +χ S ref (t t 0 ).
L physical = L gas +( L m L gas )/ n solid .

Metrics