Abstract

Terahertz (THz) absorbers with surface relief structures (SRSs) were designed and fabricated on a flexible polydimethylsiloxane(PDMS) substrate by using a stamping method. The silicon mold used for the stamping process was prepared by using a crystallographic wet etching method with 45% KOH solution at 80°C. The flexible THz absorber, consisting of micropyramids with a base width of 240 μm, demonstrated nearly perfect absorbance higher than 99% owing to the dramatically reduced surface reflectance of the SRS. The reflectance of the PDMS with the SRS was less than 1%, which is only 1/100th of that measured from a bare PDMS at frequency higher than 1 THz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
    [CrossRef]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  3. B. M. Fischer, M. Hoffmann, H. Helm, R. Wilk, F. Rutz, T. Kleine-Ostmann, M. Koch, and P. Jepsen, “Terahertz time-domain spectroscopy and imaging of artificial RNA,” Opt. Express13(14), 5205–5215 (2005).
    [CrossRef] [PubMed]
  4. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
    [CrossRef] [PubMed]
  5. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
    [CrossRef]
  6. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  7. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express20(3), 2881–2886 (2012).
    [CrossRef] [PubMed]
  8. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express15(11), 7047–7057 (2007).
    [CrossRef] [PubMed]
  9. H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5(4), 513–533 (2011).
    [CrossRef]
  10. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011).
    [CrossRef] [PubMed]
  11. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008).
    [CrossRef]
  12. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
    [CrossRef]
  13. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
    [CrossRef]
  14. X.-J. He, Y. Wang, J.-M. Wang, and T.-L. Gui, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromag. Res.115, 381–397 (2011).
  15. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
    [CrossRef]
  16. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011).
    [CrossRef] [PubMed]
  17. Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009).
    [CrossRef]
  18. B. T. DeWitt and W. D. Burnside, “Electromagneic scattering by pyramidal and wedge absorber,” IEEE Trans. Antenn. Propag.36(7), 971–984 (1988).
    [CrossRef]
  19. Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron.41(10), 771–777 (2009).
    [CrossRef]
  20. E. Bassous and E. Bassous, “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon,” IEEE Trans. Electron. Dev.25(10), 1178–1185 (1978).
    [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.73(9), 1105–1112 (1983).
    [CrossRef]
  22. P. A. George, W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, “Microfluidic devices for terahertz spectroscopy of biomolecules,” Opt. Express16(3), 1577–1582 (2008).
    [CrossRef] [PubMed]
  23. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express17(5), 3063–3077 (2009).
    [CrossRef] [PubMed]
  24. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
    [CrossRef]
  25. Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
    [CrossRef]

2012 (1)

2011 (4)

H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5(4), 513–533 (2011).
[CrossRef]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011).
[CrossRef] [PubMed]

X.-J. He, Y. Wang, J.-M. Wang, and T.-L. Gui, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromag. Res.115, 381–397 (2011).

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011).
[CrossRef] [PubMed]

2010 (2)

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
[CrossRef]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

2009 (5)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron.41(10), 771–777 (2009).
[CrossRef]

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express17(5), 3063–3077 (2009).
[CrossRef] [PubMed]

2008 (4)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

P. A. George, W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, “Microfluidic devices for terahertz spectroscopy of biomolecules,” Opt. Express16(3), 1577–1582 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008).
[CrossRef]

2007 (2)

2006 (1)

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
[CrossRef]

2005 (1)

2002 (2)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
[CrossRef] [PubMed]

1988 (1)

B. T. DeWitt and W. D. Burnside, “Electromagneic scattering by pyramidal and wedge absorber,” IEEE Trans. Antenn. Propag.36(7), 971–984 (1988).
[CrossRef]

1983 (1)

1978 (1)

E. Bassous and E. Bassous, “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon,” IEEE Trans. Electron. Dev.25(10), 1178–1185 (1978).
[CrossRef]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Azad, A. K.

H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5(4), 513–533 (2011).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Bassous, E.

E. Bassous and E. Bassous, “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon,” IEEE Trans. Electron. Dev.25(10), 1178–1185 (1978).
[CrossRef]

E. Bassous and E. Bassous, “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon,” IEEE Trans. Electron. Dev.25(10), 1178–1185 (1978).
[CrossRef]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Brückner, C.

Burnside, W. D.

B. T. DeWitt and W. D. Burnside, “Electromagneic scattering by pyramidal and wedge absorber,” IEEE Trans. Antenn. Propag.36(7), 971–984 (1988).
[CrossRef]

Castro-Camus, E.

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5(4), 513–533 (2011).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Chen, Y. W.

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009).
[CrossRef]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Cohen, R. E.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
[CrossRef]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Cumming, D. R. S.

Deng, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008).
[CrossRef]

DeWitt, B. T.

B. T. DeWitt and W. D. Burnside, “Electromagneic scattering by pyramidal and wedge absorber,” IEEE Trans. Antenn. Propag.36(7), 971–984 (1988).
[CrossRef]

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
[CrossRef] [PubMed]

Fischer, B. M.

Fu, L.

Gaylord, T. K.

George, P. A.

Grant, J.

Gui, T.-L.

X.-J. He, Y. Wang, J.-M. Wang, and T.-L. Gui, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromag. Res.115, 381–397 (2011).

Han, P. Y.

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009).
[CrossRef]

Hawkins, B. G.

Hayashi, S.

He, S.

He, X.-J.

X.-J. He, Y. Wang, J.-M. Wang, and T.-L. Gui, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromag. Res.115, 381–397 (2011).

Helm, H.

Hoffmann, M.

Hui, W.

Jagadish, C.

Jepsen, P.

Jin, Y.

Johnston, M. B.

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Käsebier, T.

Kawase, K.

Khalid, A.

Kirby, B. J.

Kleine-Ostmann, T.

Kley, E.-B.

Koch, M.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Lee, Y. T.

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron.41(10), 771–777 (2009).
[CrossRef]

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Lloyd-Hughes, J.

Ma, Y.

Minamide, H.

Moharam, M. G.

Nawata, K.

Nolte, A.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
[CrossRef]

Notni, G.

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5(4), 513–533 (2011).
[CrossRef]

Padilla, W. J.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Pradarutti, B.

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Rana, F.

Riehemann, S.

Rubner, M. F.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
[CrossRef]

Rutz, F.

Saha, S.

Sakai, H.

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Smith, A. E.

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Song, Y. M.

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron.41(10), 771–777 (2009).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Taira, T.

Tan, H. H.

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Taylor, A. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5(4), 513–533 (2011).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Tünnermann, A.

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Walish, J.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
[CrossRef]

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Wang, J.-M.

X.-J. He, Y. Wang, J.-M. Wang, and T.-L. Gui, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromag. Res.115, 381–397 (2011).

Wang, Y.

X.-J. He, Y. Wang, J.-M. Wang, and T.-L. Gui, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromag. Res.115, 381–397 (2011).

Wilk, R.

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Wu, Z.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
[CrossRef]

Ye, Y. Q.

Zhai, L.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
[CrossRef]

Zhang, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008).
[CrossRef]

Zhang, L.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008).
[CrossRef]

Zhang, X.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
[CrossRef] [PubMed]

Zhang, X.-C.

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009).
[CrossRef]

Zhao, Y.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008).
[CrossRef]

Zhong, H.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008).
[CrossRef]

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

B. T. DeWitt and W. D. Burnside, “Electromagneic scattering by pyramidal and wedge absorber,” IEEE Trans. Antenn. Propag.36(7), 971–984 (1988).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

E. Bassous and E. Bassous, “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon,” IEEE Trans. Electron. Dev.25(10), 1178–1185 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010).
[CrossRef]

Laser Photon. Rev. (1)

H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5(4), 513–533 (2011).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
[CrossRef] [PubMed]

Nat. Photonics (2)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron.41(10), 771–777 (2009).
[CrossRef]

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (2)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Prog. Electromag. Res. (1)

X.-J. He, Y. Wang, J.-M. Wang, and T.-L. Gui, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromag. Res.115, 381–397 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic view of the SRS consisting of close-packed micropyramids for THz antireflection coating. The height was determined by the crystallographic wet etching process on (100) silicon. (b) Refractive index and absorption coefficient of the PDMS extracted from the measured transmittance [21]. (c) Contour plot of the reflectance of the SRS on the PDMS substrate as a function of the frequency and the base width of the micropyramids. (d) The angle-dependent reflectance of the SRS on the PDMS substrate whose micropyramids have base width of 240 μm.

Fig. 2
Fig. 2

Fabrication process of SRS on PDMS substrates by using conventional UV photolithography, anisotropic wet etching, and a stamping technique.

Fig. 3
Fig. 3

SEM images of (a) the fabricated silicon mold with a base width of 60 μm, (b) detached PDMS sample from the silicon mold by using the stamping method, and (c) photograph of a fabricated flexible PDMS with SRS with a base width of 240 μm.

Fig. 4
Fig. 4

(a) Measured reflectance spectra for bare PDMS substrate and PDMS samples with various SRSs. The inset shows the fabricated SRSs on the PDMS substrate. (b) The enhancement ratio, calculated by the equation shown in the figure, was plotted.

Fig. 5
Fig. 5

Electric field distribution of the SRS with base width of 240 μm simulated by the RCWA method. The simulation was carried out at different z-positions in the SRS for 0.4 and 1.5 THz.

Fig. 6
Fig. 6

Measured transmittance spectra for bare PDMS substrate and SRS samples with various base widths. The inset shows the transmittance in log scale.

Fig. 7
Fig. 7

Calculated absorbance spectra for bare PDMS substrate and SRS samples with various base widths. The inset shows a schematic view of the THz wave propagation in the PDMS samples with and without the SRS.

Fig. 8
Fig. 8

Measured reflectance spectra of the bent SRS sample with a base width of 240 μm. The sample was bent with different bending radii.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h=a/2cot 54.7 o
A(f)=1R(f)T(f)

Metrics