E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express1(2), 658–675 (2010).

[CrossRef]
[PubMed]

M. Šormaz and P. Jenny, “Contrast improvement by selecting ballistic-photons using polarization gating,” Opt. Express18(23), 23746–23755 (2010).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett.103(4), 043903 (2009).

[CrossRef]
[PubMed]

G. Sendra, H. Rabal, M. Trivi, and R. Arizaga, “Numerical model for simulation of dynamic speckle reference patterns,” Opt. Commun.282(18), 3693–3700 (2009).

[CrossRef]

D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” J. Opt. Soc. Am. A25(1), 231–237 (2008).

[CrossRef]
[PubMed]

S. Moon, D. Kim, and E. Sim, “Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium: a degree-of-coherence based approach,” Appl. Opt.47(3), 336–345 (2008).

[CrossRef]
[PubMed]

J. Sawicki, N. Kastor, and M. Xu, “Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Express16(8), 5728–5738 (2008).

[CrossRef]
[PubMed]

R. Liao, H. Zhu, Y. Huang, and J. Lv, “Monte Carlo modelling of OCT with finite-size-spot photon beam,” Chin. Opt. Lett.3, S346–S347 (2005).

K. G. Phillips, M. Xu, S. Gayen, and R. Alfano, “Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media,” Opt. Express13(20), 7954–7969 (2005).

[CrossRef]
[PubMed]

M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett.95(21), 213901 (2005).

[CrossRef]
[PubMed]

M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(6), 065601 (2005).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed.47(2), 131–146 (1995).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

G. Marsaglia and A. Zaman, “A new class of random number generators,” Ann. Appl. Probab.1(3), 462–480 (1991).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).

[CrossRef]
[PubMed]

J. Von Neumann, “Various techniques used in connection with random digits,” J. Res. Natl. Bur. Stand.5, 36–38 (1951).

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).

[CrossRef]
[PubMed]

M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett.95(21), 213901 (2005).

[CrossRef]
[PubMed]

M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(6), 065601 (2005).

[CrossRef]
[PubMed]

G. Sendra, H. Rabal, M. Trivi, and R. Arizaga, “Numerical model for simulation of dynamic speckle reference patterns,” Opt. Commun.282(18), 3693–3700 (2009).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express2(2), 278–290 (2011).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett.103(4), 043903 (2009).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed.47(2), 131–146 (1995).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett.103(4), 043903 (2009).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

G. Marsaglia and A. Zaman, “A new class of random number generators,” Ann. Appl. Probab.1(3), 462–480 (1991).

[CrossRef]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express2(2), 278–290 (2011).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett.103(4), 043903 (2009).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

G. Sendra, H. Rabal, M. Trivi, and R. Arizaga, “Numerical model for simulation of dynamic speckle reference patterns,” Opt. Commun.282(18), 3693–3700 (2009).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

G. Sendra, H. Rabal, M. Trivi, and R. Arizaga, “Numerical model for simulation of dynamic speckle reference patterns,” Opt. Commun.282(18), 3693–3700 (2009).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

G. Sendra, H. Rabal, M. Trivi, and R. Arizaga, “Numerical model for simulation of dynamic speckle reference patterns,” Opt. Commun.282(18), 3693–3700 (2009).

[CrossRef]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express2(2), 278–290 (2011).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett.103(4), 043903 (2009).

[CrossRef]
[PubMed]

J. Von Neumann, “Various techniques used in connection with random digits,” J. Res. Natl. Bur. Stand.5, 36–38 (1951).

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed.47(2), 131–146 (1995).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).

[CrossRef]
[PubMed]

J. Sawicki, N. Kastor, and M. Xu, “Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Express16(8), 5728–5738 (2008).

[CrossRef]
[PubMed]

K. G. Phillips, M. Xu, S. Gayen, and R. Alfano, “Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media,” Opt. Express13(20), 7954–7969 (2005).

[CrossRef]
[PubMed]

M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett.95(21), 213901 (2005).

[CrossRef]
[PubMed]

M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(6), 065601 (2005).

[CrossRef]
[PubMed]

M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express12(26), 6530–6539 (2004).

[CrossRef]
[PubMed]

G. Marsaglia and A. Zaman, “A new class of random number generators,” Ann. Appl. Probab.1(3), 462–480 (1991).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed.47(2), 131–146 (1995).

[CrossRef]

G. Marsaglia and A. Zaman, “A new class of random number generators,” Ann. Appl. Probab.1(3), 462–480 (1991).

[CrossRef]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999).

[CrossRef]
[PubMed]

S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt.39(10), 1580–1588 (2000).

[CrossRef]
[PubMed]

S. Moon, D. Kim, and E. Sim, “Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium: a degree-of-coherence based approach,” Appl. Opt.47(3), 336–345 (2008).

[CrossRef]
[PubMed]

E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express1(2), 658–675 (2010).

[CrossRef]
[PubMed]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express2(2), 278–290 (2011).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed.47(2), 131–146 (1995).

[CrossRef]

J. Von Neumann, “Various techniques used in connection with random digits,” J. Res. Natl. Bur. Stand.5, 36–38 (1951).

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).

[CrossRef]
[PubMed]

G. Sendra, H. Rabal, M. Trivi, and R. Arizaga, “Numerical model for simulation of dynamic speckle reference patterns,” Opt. Commun.282(18), 3693–3700 (2009).

[CrossRef]

M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express12(26), 6530–6539 (2004).

[CrossRef]
[PubMed]

K. G. Phillips, M. Xu, S. Gayen, and R. Alfano, “Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media,” Opt. Express13(20), 7954–7969 (2005).

[CrossRef]
[PubMed]

J. Sawicki, N. Kastor, and M. Xu, “Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Express16(8), 5728–5738 (2008).

[CrossRef]
[PubMed]

M. Šormaz and P. Jenny, “Contrast improvement by selecting ballistic-photons using polarization gating,” Opt. Express18(23), 23746–23755 (2010).

[CrossRef]
[PubMed]

M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(6), 065601 (2005).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett.103(4), 043903 (2009).

[CrossRef]
[PubMed]

M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett.95(21), 213901 (2005).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).

[CrossRef]
[PubMed]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1999), Vol.1.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser speckle and related phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–75.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, Englewood, Colorado, 2007).

Nvidia Corporation, “CUDA programming guide 4.2,” (2012).