Abstract

We report the transmission of 40 quantum-key channels using WDM/SCM-QKD technology and 4 bidirectional classical channels over a PON. To our knowledge the highest number of quantum key channels simultaneously transmitted that has ever been reported. The quantum signal coexists with classical reference channel which is employed to process the qbits, but it has enough low power to avoid Raman crosstalk and achieving a high number of WDM-QKD channels. The experimental results allow us to determine the minimum rejection ratio required by the filtering devices employed to select each quantum channel and maximize the quantum key rate. These results open the path towards high-count QKD channel transmission over optical fiber infrastructures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum criptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [CrossRef]
  2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
    [CrossRef]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  4. J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
    [CrossRef]
  5. K. Yoshino, M. Fujiwara, A. Tanaka, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, and A. Tajima, “A high-speed wavelength-division multiplexing quantum key distribution system,” Opt. Lett. 37(2), 223–225 (2012).
    [CrossRef]
  6. J. Mora, A. Ruiz-Alba, W. Amaya, A. Martínez, V. García-Muñoz, D. Calvo, and J. Capmany, “Experimental demonstration of subcarrier multiplexed quantum key distribution system,” Opt. Lett. 37(11), 2031–2033 (2012).
    [CrossRef] [PubMed]
  7. P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
    [CrossRef]
  8. A. Tanaka, M. Fujiwara, K. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, and A. Tajima, “A scalable full quantum key distribution system based on colourless interferometric technique and hardware key distillation,” in Proc. 37th European Conference on Optical Communication, paper Mo.1.B.3, 1–3 (2011).
  9. I. Choi, R. J. Young, and P. D. Townsend, “Quantum key distribution on a 10Gb/s WDM-PON,” Opt. Express 18(9), 9600–9612 (2010).
    [CrossRef] [PubMed]
  10. B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
    [CrossRef] [PubMed]
  11. J. Mora, A. Ruiz-Alba, W. Amaya, V. Garcia-Muñoz, A. Martínez, and J. Capmany, “Microwave photonic filtering scheme for BB84 subcarrier multiplexed quantum key distribution,” in IEEE Topical Meeting on Microwave Photonics, pp. 286–289 (2007).
  12. O. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single-photon source using a strong reference,” IEEE Photon. Technol. Lett. 17(8), 1755–1757 (2005).
    [CrossRef]
  13. J. Capmany and C. R. Fernandez-Pousa, “Impact of third-order intermodulation on the performance of subcarrier multiplexed quantum key distribution,” J. Lightwave Technol. 29(20), 3061–3069 (2011).
    [CrossRef]
  14. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
    [CrossRef]

2012

2011

2010

2009

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[CrossRef]

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
[CrossRef]

2007

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
[CrossRef] [PubMed]

2005

O. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single-photon source using a strong reference,” IEEE Photon. Technol. Lett. 17(8), 1755–1757 (2005).
[CrossRef]

2002

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum criptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

1997

P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[CrossRef]

Amaya, W.

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[CrossRef]

Calvo, D.

Capmany, J.

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[CrossRef]

Chen, J.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
[CrossRef]

Choi, I.

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[CrossRef]

Fernandez-Pousa, C. R.

Fujiwara, M.

García-Muñoz, V.

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum criptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Gu, X.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
[CrossRef]

Guerreau, O.

O. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single-photon source using a strong reference,” IEEE Photon. Technol. Lett. 17(8), 1755–1757 (2005).
[CrossRef]

Kardynal, B. E.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[CrossRef]

Malassenet, F. J.

O. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single-photon source using a strong reference,” IEEE Photon. Technol. Lett. 17(8), 1755–1757 (2005).
[CrossRef]

Martínez, A.

McLaughlin, S. W.

O. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single-photon source using a strong reference,” IEEE Photon. Technol. Lett. 17(8), 1755–1757 (2005).
[CrossRef]

Merolla, J. M.

O. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single-photon source using a strong reference,” IEEE Photon. Technol. Lett. 17(8), 1755–1757 (2005).
[CrossRef]

Miki, S.

Mora, J.

Nambu, Y.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Ortega, B.

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[CrossRef]

Puerto, G.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum criptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Ruiz-Alba, A.

Sasaki, M.

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[CrossRef]

Sharpe, A. W.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Shields, A. J.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Tajima, A.

Takahashi, S.

Tanaka, A.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum criptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Tomita, A.

Townsend, P.

P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[CrossRef]

Townsend, P. D.

Wang, Z.

Wu, E.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
[CrossRef]

Wu, G.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
[CrossRef]

Xu, L.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
[CrossRef]

Yamashita, T.

Yoshino, K.

Young, R. J.

Yuan, Z. L.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum criptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Zeng, H.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
[CrossRef]

Appl. Phys. Lett.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Electron. Lett.

P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

O. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single-photon source using a strong reference,” IEEE Photon. Technol. Lett. 17(8), 1755–1757 (2005).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

New J. Phys.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” New J. Phys. 11(6), 065004 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum criptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[CrossRef]

Other

A. Tanaka, M. Fujiwara, K. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, and A. Tajima, “A scalable full quantum key distribution system based on colourless interferometric technique and hardware key distillation,” in Proc. 37th European Conference on Optical Communication, paper Mo.1.B.3, 1–3 (2011).

J. Mora, A. Ruiz-Alba, W. Amaya, V. Garcia-Muñoz, A. Martínez, and J. Capmany, “Microwave photonic filtering scheme for BB84 subcarrier multiplexed quantum key distribution,” in IEEE Topical Meeting on Microwave Photonics, pp. 286–289 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical network schematic with dual feeder fiber architecture and frequency plan.

Fig. 2
Fig. 2

Scheme of SCM-QKD system for one user integrated on the optical network. Alice (transmitter) is located in the central node and Bob (receiver) acts as end-user. Probability distribution for two bits “0” and “1” corresponding to the electrical subcarriers f1 and f2, respectively, transmitted in parallel at (a) Alice’s side and (b) after detection in Bob’s side measuring in matched basis.

Fig. 3
Fig. 3

BER measurement for DS and US channels with quantum channels (a) enabled and (b) disabled. DS channels are located at 1567.95 (●), 1568.11 (●), 1569.59 (●) and 1570.42 nm (●) and US channels are located at 1571.24 (■), 1572.06 (■), 1572.89 (■) and 1573.71 nm (■). Also, B2B is plotted for a DS (●) and US (■) channels.

Fig. 4
Fig. 4

QBER vs. the extinction ratio for the electrical subcarrier (a) 10 GHz and (b) 15 GHz and the (c) total secret key rate when a single quantum channel (■) and 3 (●), 11(▲) and 20 (▼) WDM quantum channels are enabled.

Metrics