Abstract

We demonstrate optical trapping and manipulation of micron-sized absorbing air-borne particles with a single focused Gaussian beam. Transportation of trapped nonspherical particles from one beam to another is realized, and the underlying mechanism for the trapping is discussed by considering the combined action of several forces. By employing a specially-designed optical bottle beam, we observe stable trapping and optical transportation of light-absorbing particles from one container to another that is less susceptible to ambient perturbation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  3. D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photon. News21(3), 20–26 (2010).
    [CrossRef]
  4. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express17(7), 5743–5757 (2009).
    [CrossRef] [PubMed]
  5. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express17(10), 8201–8211 (2009).
    [CrossRef] [PubMed]
  6. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett.105(11), 118103 (2010).
    [CrossRef] [PubMed]
  7. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett.36(8), 1491–1493 (2011).
    [CrossRef] [PubMed]
  8. M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett.40(6), 455–457 (1982).
    [CrossRef]
  9. A. B. Pluchino, “Radiometric levitation of spherical carbon aerosol particles using a Nd:YAG laser,” Appl. Opt.22(12), 1861–1866 (1983).
    [CrossRef] [PubMed]
  10. J. Huisken and E. H. K. Stelzer, “Optical levitation of absorbing particles with a nominally Gaussian laser beam,” Opt. Lett.27(14), 1223–1225 (2002).
    [CrossRef] [PubMed]
  11. H. Rohatschek, “Direction, magnitude and causes of photophoretic forces,” J. Aerosol Sci.16(1), 29–42 (1985).
    [CrossRef]
  12. A. B. Pluchino, “Photophoretic force on particles for low Knudsen number,” Appl. Opt.22(1), 103–106 (1983).
    [CrossRef] [PubMed]
  13. O. Jovanovic, “Photophoresis: light-induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf.110(11), 889–901 (2009).
    [CrossRef]
  14. A. B. Pluchino and S. Arnold, “Comprehensive model of the photophoretic force on a spherical microparticle,” Opt. Lett.10(6), 261–263 (1985).
    [CrossRef] [PubMed]
  15. W. M. Greene, R. E. Spjut, E. Bar-Ziv, J. P. Longwell, and A. F. Sarofim, “Photophoresis of irradiated spheres: evaluation of the complex index of refraction,” Langmuir1(3), 361–365 (1985).
    [CrossRef]
  16. H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci.26(5), 717–734 (1995).
    [CrossRef]
  17. F. O. Goodman, “Thermal accommodation coefficients,” J. Phys. Chem.84(12), 1431–1445 (1980).
    [CrossRef]
  18. V. G. Shvedov, C. Hnatovsky, A. V. Rode, and W. Krolikowski, “Robust trapping and manipulation of airborne particles with a bottle beam,” Opt. Express19(18), 17350–17356 (2011).
    [CrossRef] [PubMed]
  19. Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express20(5), 5325–5334 (2012).
    [CrossRef] [PubMed]
  20. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett.36(18), 3675–3677 (2011).
    [CrossRef] [PubMed]
  21. Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
    [CrossRef] [PubMed]

2012

2011

2010

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photon. News21(3), 20–26 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett.105(11), 118103 (2010).
[CrossRef] [PubMed]

2009

2002

1995

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci.26(5), 717–734 (1995).
[CrossRef]

1986

1985

A. B. Pluchino and S. Arnold, “Comprehensive model of the photophoretic force on a spherical microparticle,” Opt. Lett.10(6), 261–263 (1985).
[CrossRef] [PubMed]

W. M. Greene, R. E. Spjut, E. Bar-Ziv, J. P. Longwell, and A. F. Sarofim, “Photophoresis of irradiated spheres: evaluation of the complex index of refraction,” Langmuir1(3), 361–365 (1985).
[CrossRef]

H. Rohatschek, “Direction, magnitude and causes of photophoretic forces,” J. Aerosol Sci.16(1), 29–42 (1985).
[CrossRef]

1983

1982

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett.40(6), 455–457 (1982).
[CrossRef]

1980

F. O. Goodman, “Thermal accommodation coefficients,” J. Phys. Chem.84(12), 1431–1445 (1980).
[CrossRef]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Arnold, S.

A. B. Pluchino and S. Arnold, “Comprehensive model of the photophoretic force on a spherical microparticle,” Opt. Lett.10(6), 261–263 (1985).
[CrossRef] [PubMed]

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett.40(6), 455–457 (1982).
[CrossRef]

Ashkin, A.

Barak, A.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Bar-Ziv, E.

W. M. Greene, R. E. Spjut, E. Bar-Ziv, J. P. Longwell, and A. F. Sarofim, “Photophoresis of irradiated spheres: evaluation of the complex index of refraction,” Langmuir1(3), 361–365 (1985).
[CrossRef]

Bjorkholm, J. E.

Chen, Z.

Chremmos, I.

Christodoulides, D. N.

Chu, S.

Coleman, M.

Desyatnikov, A. S.

Dziedzic, J. M.

Efremidis, N. K.

Goodman, F. O.

F. O. Goodman, “Thermal accommodation coefficients,” J. Phys. Chem.84(12), 1431–1445 (1980).
[CrossRef]

Greene, W. M.

W. M. Greene, R. E. Spjut, E. Bar-Ziv, J. P. Longwell, and A. F. Sarofim, “Photophoresis of irradiated spheres: evaluation of the complex index of refraction,” Langmuir1(3), 361–365 (1985).
[CrossRef]

Hernandez, D.

Hill, S. C.

Hnatovsky, C.

Huang, S.

Huisken, J.

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett.105(11), 118103 (2010).
[CrossRef] [PubMed]

Jovanovic, O.

O. Jovanovic, “Photophoresis: light-induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf.110(11), 889–901 (2009).
[CrossRef]

Kivshar, Y. S.

Krolikowski, W.

Lamhot, Y.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett.40(6), 455–457 (1982).
[CrossRef]

Longwell, J. P.

W. M. Greene, R. E. Spjut, E. Bar-Ziv, J. P. Longwell, and A. F. Sarofim, “Photophoresis of irradiated spheres: evaluation of the complex index of refraction,” Langmuir1(3), 361–365 (1985).
[CrossRef]

McGloin, D.

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photon. News21(3), 20–26 (2010).
[CrossRef]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett.40(6), 455–457 (1982).
[CrossRef]

Pan, Y. L.

Peleg, O.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Pluchino, A. B.

Prakash, J.

Reid, J. P.

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photon. News21(3), 20–26 (2010).
[CrossRef]

Rode, A. V.

Rohatschek, H.

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci.26(5), 717–734 (1995).
[CrossRef]

H. Rohatschek, “Direction, magnitude and causes of photophoretic forces,” J. Aerosol Sci.16(1), 29–42 (1985).
[CrossRef]

Salazar, M.

Sarofim, A. F.

W. M. Greene, R. E. Spjut, E. Bar-Ziv, J. P. Longwell, and A. F. Sarofim, “Photophoresis of irradiated spheres: evaluation of the complex index of refraction,” Langmuir1(3), 361–365 (1985).
[CrossRef]

Segev, M.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Shvedov, V. G.

Spjut, R. E.

W. M. Greene, R. E. Spjut, E. Bar-Ziv, J. P. Longwell, and A. F. Sarofim, “Photophoresis of irradiated spheres: evaluation of the complex index of refraction,” Langmuir1(3), 361–365 (1985).
[CrossRef]

Stelzer, E. H. K.

Zhang, P.

Zhang, Z.

Appl. Opt.

Appl. Phys. Lett.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett.40(6), 455–457 (1982).
[CrossRef]

J. Aerosol Sci.

H. Rohatschek, “Direction, magnitude and causes of photophoretic forces,” J. Aerosol Sci.16(1), 29–42 (1985).
[CrossRef]

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci.26(5), 717–734 (1995).
[CrossRef]

J. Phys. Chem.

F. O. Goodman, “Thermal accommodation coefficients,” J. Phys. Chem.84(12), 1431–1445 (1980).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

O. Jovanovic, “Photophoresis: light-induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf.110(11), 889–901 (2009).
[CrossRef]

Langmuir

W. M. Greene, R. E. Spjut, E. Bar-Ziv, J. P. Longwell, and A. F. Sarofim, “Photophoresis of irradiated spheres: evaluation of the complex index of refraction,” Langmuir1(3), 361–365 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon. News

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photon. News21(3), 20–26 (2010).
[CrossRef]

Phys. Rev. Lett.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett.105(11), 118103 (2010).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Supplementary Material (5)

» Media 1: MOV (2155 KB)     
» Media 2: MOV (1015 KB)     
» Media 3: MOV (2226 KB)     
» Media 4: MOV (1830 KB)     
» Media 5: MOV (2910 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Trapping of silicon particles by a single focused Gaussian beam. (a) Multi-particles trapped before and after the focal point inside a glass cuvette; (b) A few particles remained in the trap when they were moved out of the cuvette; (c, d) Microscopic image of trapped non-spherical silicon particles; (e) Unstably trapped glassy carbon spherical particles; (f, g) Side-view photographs of scattered light patterns from particles before and after the focal point. In (a, b), dashed circle marks the position of a trapped particle, vertical arrow marks the location of focal point, and dashed horizontal arrow illustrates the input direction and focusing condition of the laser beam. The white arrow s in (f, g) denote the propagation direction of the laser beam. When the beam is loosely focused, the particles cannot be stably trapped but rather driven by the laser beam and move in the direction of beam propagation as shown in the media file (Media 1).

Fig. 2
Fig. 2

(a, b) Laser-power-dependent particle trapping at (a) 0.2 Watts and (b) 1.2 Watts when other conditions unchanged (Media 2); (c, d) Intensity-gradient-dependent particle trapping when the laser beam is (c) strongly focused and (d) weakly focused (Media 3). The vertical arrow marks the location of the focal point and the horizontal arrow illustrates the orientation and shape of the trapping beam.

Fig. 3
Fig. 3

Particles transportation between two orthogonally oriented Gaussian beams, Media 4. (a) A particle is trapped first by the vertical beam; (b) The particle is taken by the horizontal beam. The dashed arrows illustrate the orientation and shape of the trapping beams.

Fig. 4
Fig. 4

(left): Illustration of possible trapping mechanism involved in single Gaussian beam trapping. (a, b) show the negative and positive FΔT force resulting from temperature gradient, respectively; (c) FΔα force resulting from different surface thermal accommodation coefficient; (d) The balance of combined action of gravity (G), radiation force (FR), and the two types of photophoretic forces FΔα and FΔT. Fig. 4. (right): Observation of particle transportation from one glass cuvette to another by using a specially-designed optical bottle beam (Media 5).

Metrics