Abstract

Wafer-scale production of single InGaN quantum disks (QD) in-a-nanorod array with small rod diameter (> 9 nm) and low rod-density (< 108 cm−2) has been achieved without extensive processing steps. Excitation power-dependent μPL spectrum of single QD reveals multi-excitonic peak with 0.75 meV blue-shift for 3 orders of magnitude increasing power, indicating the present system is spectrally stable and nearly free of quantum-confined Stark effects, due possibly to the strain relaxation induced by free surface of small rod diameters. The fully polarized emissions, a high working temperature (180 K), low rod density and good alignment, render this system promising as a potential quantum photon source.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
    [CrossRef] [PubMed]
  2. J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
    [CrossRef] [PubMed]
  3. J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008).
    [CrossRef] [PubMed]
  4. R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
    [CrossRef]
  5. M. J. Holmes, Y. S. Park, J. H. Warner, and R. A. Taylor, “Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1-xN quantum disk,” Appl. Phys. Lett. 95(18), 181910 (2009).
    [CrossRef]
  6. L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
    [CrossRef] [PubMed]
  7. F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006).
    [CrossRef]
  8. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
    [CrossRef]
  9. H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
    [CrossRef] [PubMed]
  10. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
    [CrossRef] [PubMed]
  11. R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
    [CrossRef] [PubMed]
  12. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
    [CrossRef]
  13. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
    [CrossRef]
  14. S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
    [CrossRef]
  15. M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007).
    [CrossRef]
  16. A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
    [CrossRef] [PubMed]
  17. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
    [CrossRef] [PubMed]
  18. C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
    [CrossRef]
  19. O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000).
    [CrossRef]
  20. V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
    [CrossRef]
  21. S. Amloy, K. F. Karlsson, T. G. Andersson, and P. O. Holtz, “On the polarized emission from exciton complexes in GaN quantum dots,” Appl. Phys. Lett. 100(2), 021901 (2012).
    [CrossRef]
  22. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992).
    [CrossRef] [PubMed]
  23. C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
    [CrossRef] [PubMed]
  24. J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
    [CrossRef] [PubMed]
  25. K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006).
    [CrossRef]

2012

S. Amloy, K. F. Karlsson, T. G. Andersson, and P. O. Holtz, “On the polarized emission from exciton complexes in GaN quantum dots,” Appl. Phys. Lett. 100(2), 021901 (2012).
[CrossRef]

2011

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
[CrossRef] [PubMed]

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

2010

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

2009

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

M. J. Holmes, Y. S. Park, J. H. Warner, and R. A. Taylor, “Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1-xN quantum disk,” Appl. Phys. Lett. 95(18), 181910 (2009).
[CrossRef]

2008

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008).
[CrossRef] [PubMed]

2007

R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
[CrossRef] [PubMed]

M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007).
[CrossRef]

A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
[CrossRef] [PubMed]

2006

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006).
[CrossRef]

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006).
[CrossRef]

2005

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

2004

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

2001

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

2000

O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000).
[CrossRef]

1999

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

1992

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992).
[CrossRef] [PubMed]

Amloy, S.

S. Amloy, K. F. Karlsson, T. G. Andersson, and P. O. Holtz, “On the polarized emission from exciton complexes in GaN quantum dots,” Appl. Phys. Lett. 100(2), 021901 (2012).
[CrossRef]

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

Andersson, T. G.

S. Amloy, K. F. Karlsson, T. G. Andersson, and P. O. Holtz, “On the polarized emission from exciton complexes in GaN quantum dots,” Appl. Phys. Lett. 100(2), 021901 (2012).
[CrossRef]

Arakawa, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000).
[CrossRef]

Bacher, G.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Bardoux, R.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Barker, J. M.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Bennett, C. H.

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992).
[CrossRef] [PubMed]

Bernard, R.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Bertness, K. A.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Beveratos, A.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Bloch, J.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Borovitskaya, E.

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Bougerol, C.

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008).
[CrossRef] [PubMed]

Brandt, O.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Calarco, R.

R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
[CrossRef] [PubMed]

Calleja, E.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

Chen, C. C.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, C. H.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, K. H.

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, L. C.

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, Y. F.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, Y. T.

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

Chèze, C.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Daudin, B.

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008).
[CrossRef] [PubMed]

Davydov, A.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Debnath, R. K.

R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
[CrossRef] [PubMed]

Dimitrakopulos, G. P.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Dousse, A.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Fernández-Garrido, S.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

Figge, S.

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

Forchel, A.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Forsberg, U.

C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
[CrossRef] [PubMed]

Funato, M.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Gayral, B.

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008).
[CrossRef] [PubMed]

Geelhaar, L.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Gerard, J. M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Glas, F.

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006).
[CrossRef]

Götzinger, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Gutowski, J.

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006).
[CrossRef]

Halm, S.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Heffernan, J.

M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007).
[CrossRef]

Holmes, M. J.

M. J. Holmes, Y. S. Park, J. H. Warner, and R. A. Taylor, “Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1-xN quantum disk,” Appl. Phys. Lett. 95(18), 181910 (2009).
[CrossRef]

Holtz, P. O.

S. Amloy, K. F. Karlsson, T. G. Andersson, and P. O. Holtz, “On the polarized emission from exciton complexes in GaN quantum dots,” Appl. Phys. Lett. 100(2), 021901 (2012).
[CrossRef]

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
[CrossRef] [PubMed]

Hommel, D.

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006).
[CrossRef]

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Hooper, S. E.

M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007).
[CrossRef]

Hoshino, K.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Hsiao, C. L.

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

Hsu, C. W.

C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
[CrossRef] [PubMed]

Hsu, H. C.

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

Humphreys, C. J.

A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
[CrossRef] [PubMed]

Ishida, S.

O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000).
[CrossRef]

Jacopin, G.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Jahn, U.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

Janzén, E.

C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
[CrossRef] [PubMed]

Jarjour, A. F.

A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
[CrossRef] [PubMed]

Julien, F. H.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Kako, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Kalden, J.

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

Kaneta, A.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Kappers, M. J.

A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
[CrossRef] [PubMed]

Karakostas, T.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Karlsson, K. F.

S. Amloy, K. F. Karlsson, T. G. Andersson, and P. O. Holtz, “On the polarized emission from exciton complexes in GaN quantum dots,” Appl. Phys. Lett. 100(2), 021901 (2012).
[CrossRef]

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
[CrossRef] [PubMed]

Kawakami, Y.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Kehagias, T.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Kikuchi, A.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Kishino, K.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Kociak, M.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Komninou, P.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Krebs, O.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Kruse, C.

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

Kulakovskii, V. D.

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Kummell, T.

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Laslier, B.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Lemaître, A.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Leonardi, K.

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Liu, H. L.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Lohmeyer, H.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006).
[CrossRef]

Lundskog, A.

C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
[CrossRef] [PubMed]

Lüth, H.

R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
[CrossRef] [PubMed]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

March, K.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Mazzucco, S.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Meijers, R. J.

R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
[CrossRef] [PubMed]

Moriwaki, O.

O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000).
[CrossRef]

Munch, S.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Off, J.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Oliver, R. A.

A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
[CrossRef] [PubMed]

Park, Y. S.

M. J. Holmes, Y. S. Park, J. H. Warner, and R. A. Taylor, “Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1-xN quantum disk,” Appl. Phys. Lett. 95(18), 181910 (2009).
[CrossRef]

Peng, J. Y.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Ploog, K. H.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

Reitzenstein, S.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Renard, J.

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008).
[CrossRef] [PubMed]

Riechert, H.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Rigutti, L.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Ristic, J.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

Rivera, C.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

Roshko, A.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Rothemund, R.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Sagnes, I.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Sanford, N. A.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Santori, C.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Scholz, F.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Schömig, H.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Sebald, K.

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006).
[CrossRef]

Sekiguchi, H.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

Senellart, P.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Sénès, M.

M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007).
[CrossRef]

Smeeton, T. M.

M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007).
[CrossRef]

Smith, K. L.

M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007).
[CrossRef]

Someya, T.

O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000).
[CrossRef]

Songmuang, R.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008).
[CrossRef] [PubMed]

Stoica, T.

R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
[CrossRef] [PubMed]

Suffczynski, J.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Sutter, E.

R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
[CrossRef] [PubMed]

Tachibana, K.

O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000).
[CrossRef]

Tahraoui, A.

A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
[CrossRef] [PubMed]

Taylor, R. A.

M. J. Holmes, Y. S. Park, J. H. Warner, and R. A. Taylor, “Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1-xN quantum disk,” Appl. Phys. Lett. 95(18), 181910 (2009).
[CrossRef]

A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
[CrossRef] [PubMed]

Tchernycheva, M.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Tencé, M.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Tessarek, C.

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

Trampert, A.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

Voisin, P.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Warner, J. H.

M. J. Holmes, Y. S. Park, J. H. Warner, and R. A. Taylor, “Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1-xN quantum disk,” Appl. Phys. Lett. 95(18), 181910 (2009).
[CrossRef]

Weber, W. M.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Weigand, R.

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Wu, J. J.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Yamaguchi, T.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006).
[CrossRef]

Yamamoto, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Yeh, C. C.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Yu, M. Y.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Zagonel, L. F.

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. J. Holmes, Y. S. Park, J. H. Warner, and R. A. Taylor, “Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1-xN quantum disk,” Appl. Phys. Lett. 95(18), 181910 (2009).
[CrossRef]

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett. 76(17), 2361–2363 (2000).
[CrossRef]

S. Amloy, K. F. Karlsson, T. G. Andersson, and P. O. Holtz, “On the polarized emission from exciton complexes in GaN quantum dots,” Appl. Phys. Lett. 100(2), 021901 (2012).
[CrossRef]

J. Am. Chem. Soc.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

J. Cryst. Growth

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Nano Lett.

R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007).
[CrossRef] [PubMed]

L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, “Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure,” Nano Lett. 11(2), 568–573 (2011).
[CrossRef] [PubMed]

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8(7), 2092–2096 (2008).
[CrossRef] [PubMed]

C. W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Lett. 11(6), 2415–2418 (2011).
[CrossRef] [PubMed]

Nano Res.

C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res. 3(7), 528–536 (2010).
[CrossRef]

Nanotechnology

J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology 21(1), 015204 (2010).
[CrossRef] [PubMed]

Nat. Mater.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Nat. Photonics

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Nature

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[CrossRef] [PubMed]

Phys. Rev. B

S. Amloy, Y. T. Chen, K. F. Karlsson, K. H. Chen, H. C. Hsu, C. L. Hsiao, L. C. Chen, and P. O. Holtz, “Polarization-resolved fine-structure splitting of zero-dimensional In(x)Ga(1-x)N excitons,” Phys. Rev. B 83(20), 201307 (2011).
[CrossRef]

M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B 75(4), 045314 (2007).
[CrossRef]

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1-xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006).
[CrossRef]

Phys. Rev. Lett.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[CrossRef] [PubMed]

A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, C. J. Humphreys, and R. A. Taylor, “Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot,” Phys. Rev. Lett. 99(19), 197403 (2007).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992).
[CrossRef] [PubMed]

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kummell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Phys. Rev. Lett. 82(8), 1780–1783 (1999).
[CrossRef]

Phys. Status Solidi, B Basic Res.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, “Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K,” Phys. Status Solidi, B Basic Res. 243(7), 1661–1664 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration and morphology of InGaN QD in GaN nanorod. (a) Narrow GaN nanorods were grown on top of the Si(111) substrate and AlN nucleation layer by using MBE. The structure was divided into upper narrow nanorods and underlying columns.. A single 2 nm thick InGaN QD and a 5 nm GaN cap were grown on top of the GaN nanorod. The schematic is not to scale. (b) Transmission electron microscopy (TEM) bright field image of a single rod. The scale bar is 100 nm. A nanorod of 1 μm long was grown simultaneously with the underlying column and shared a common edge. The rod diameter shrinks 10 times from the columnar part to the rod part. The rod reveals almost no tapering effect after long-time growth. The QD is formed at the end of the rod (c) High resolution SEM image shows straight, well-aligned, uniform QD in-a-rod structure and underlying columns. The scale bar is 200 nm. The shapes of rods are hexagonal as shown in the inset.

Fig. 2
Fig. 2

Structural investigation of single InGaN QD in GaN nanorod by HRTEM and STEM-EDX. (a) Clear diffraction pattern of the wurtzite lattice with no dislocation or extended defect indicates high structural quality for both GaN and InGaN. The scale bar is 5 nm. (b) Selected area diffraction (SAD) pattern of the rod in (a). (c) TEM image of the same rod of (a) with the lower magnification shows the InGaN black stripe (pointed by arrow) along the radial direction. It indicates the position of the 2 nm InGaN QD and the thickness of capping GaN. (d) STEM-EDX investigation shows 2.93%, 10.03%, and 3.12% In/Ga molar ratio of InGaN QD when focusing the electron beam on the nanorod(1), QD(2), and the cap(3) respectively. (e) Nanorods are grown with a smallest diameter of 9 nm. The scale bar is 5 nm.

Fig. 3
Fig. 3

Optical characterization of single QD. (a) Spectrum of μPL measurement performed on an as grown sample. The laser was injected and the emission was detected from the top of the sample and along the c-axis. Since our laser spot-size is 3μm in diameter which is much larger than the rod diameter, both the rod and the underlying columnar part are excited. Thanks to the low-density of rods, isolated single QD emissions can be identified clearly with observed emission energy lower than 3.2 eV. (b) In order to know whether the sharp peaks in (a) come from the QD, single rods were scratched out of the sample and dispersed onto a clean Si surface. SEM images were taken to locate the single nanorod before the μPL experiment. The scale bar is 100 nm. Rod morphology as well as position relative to the metal pattern on the Si can be recorded in the SEM beforehand, and located in the μPL system regarding to the metal pattern. (c-d) Results of μPL measurements for a single nanorod. Excitation power dependent PL spectra reveal three peaks, which can be identified as single exciton(X), biexcition(XX), and trion(X*), according to the power dependence of PL intensity shown in (d). The emission intensities are not saturated as the excitation power varied from 0.2 to 300 kW/cm2. Solid lines are drawn to guide the eye.

Fig. 4
Fig. 4

Power dependent-, polarization dependent-, and temperature dependent- μPL spectra we performed on single QD. (a) With an excitation power-change in three orders of magnitude, exciton and trion peaks shown in Fig. 3 shifted by only 0.75 and 0.33 meV respectively. The peak shifts occur when the power was lower than 3 kW/cm2, and were almost fixed all the way up to 300 kW/cm2. It showed very weak but noticeable screening effects inside the QD, thanks to the ignorable strain in the crystal. (b) Polarization dependence measurement of the PL peaks in (a). The numbers denote the rotation-angle of the polarization of the QD emissions. The degree of polarization of 88.9% and 94.4% was detected and calc ulated with the function of P = (I// - I) / (I// + I), where I// and I represent the maximum and minimum intensity respectively. The polarization directions of both peaks are well aligned, showing the same origin of the emissions. (c) Temperature-dependent PL spectra from a single QD. It is observed that QD emissions can be detected in the high temperature. The highest tolerant temperate is 180K.

Metrics