Abstract

Here, we present parametric studies of a method for enhancing radiation from a dielectric waveguide through the use of resonant coreshells. These coreshells act as a compact impedance matching element between the guided modes of the waveguide and radiation modes in free space. Furthermore, we also show that we can sense the distance between the waveguide end and the coreshell by monitoring the reflectance of the waveguide mode. Coreshell decoupled radiation from dielectric waveguides could hence find use for highly integrated optical coupling elements or nanometric distance sensors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
    [CrossRef] [PubMed]
  3. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
    [CrossRef] [PubMed]
  4. T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates,” ACS Nano5(3), 2036–2041 (2011).
    [CrossRef] [PubMed]
  5. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
    [CrossRef] [PubMed]
  6. J. B. Jackson and N. J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105(14), 2743–2746 (2001).
    [CrossRef]
  7. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
    [CrossRef] [PubMed]
  8. R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
    [CrossRef]
  9. A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys.97(9), 094310 (2005).
    [CrossRef]
  10. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  11. B. Jalali, “Teaching silicon new tricks,” Nat. Photonics1(4), 193–195 (2007).
    [CrossRef]
  12. M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005).
    [CrossRef]
  13. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407 (2004).
    [CrossRef]
  14. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Opt. Express12(22), 5481–5486 (2004).
    [CrossRef] [PubMed]
  15. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
    [CrossRef] [PubMed]
  16. J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antenn. Propag.55(11), 3018–3026 (2007).
    [CrossRef]
  17. P. T. B. Shaffer and R. G. Naum, “Refractive index and dispersion of beta silicon carbide,” J. Opt. Soc. Am.59(11), 1498–1498 (1969).
    [CrossRef]
  18. P. T. B. Shaffer, “Refractive index, dispersion, and birefringence of silicon carbide polytypes,” Appl. Opt.10(5), 1034–1036 (1971).
    [CrossRef] [PubMed]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  20. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley, 2005).

2011 (2)

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
[CrossRef] [PubMed]

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates,” ACS Nano5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

2010 (2)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

2009 (1)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

2008 (1)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

2007 (2)

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antenn. Propag.55(11), 3018–3026 (2007).
[CrossRef]

B. Jalali, “Teaching silicon new tricks,” Nat. Photonics1(4), 193–195 (2007).
[CrossRef]

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

2005 (2)

M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005).
[CrossRef]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys.97(9), 094310 (2005).
[CrossRef]

2004 (2)

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407 (2004).
[CrossRef]

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Opt. Express12(22), 5481–5486 (2004).
[CrossRef] [PubMed]

2001 (1)

J. B. Jackson and N. J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105(14), 2743–2746 (2001).
[CrossRef]

1997 (1)

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1971 (1)

1969 (1)

Alù, A.

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys.97(9), 094310 (2005).
[CrossRef]

Aouani, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
[CrossRef] [PubMed]

Averitt, R.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

Baehr-Jones, T.

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Brian, B.

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates,” ACS Nano5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Dereux, A.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407 (2004).
[CrossRef]

Devaux, E.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
[CrossRef] [PubMed]

Engheta, N.

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antenn. Propag.55(11), 3018–3026 (2007).
[CrossRef]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys.97(9), 094310 (2005).
[CrossRef]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Girard, C.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407 (2004).
[CrossRef]

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Halas, N.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

J. B. Jackson and N. J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105(14), 2743–2746 (2001).
[CrossRef]

Hochberg, M.

Jackson, J. B.

J. B. Jackson and N. J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105(14), 2743–2746 (2001).
[CrossRef]

Jalali, B.

B. Jalali, “Teaching silicon new tricks,” Nat. Photonics1(4), 193–195 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Käll, M.

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates,” ACS Nano5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Li, J.

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antenn. Propag.55(11), 3018–3026 (2007).
[CrossRef]

Lipson, M.

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
[CrossRef] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Miljkovic, V. D.

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates,” ACS Nano5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

Naum, R. G.

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407 (2004).
[CrossRef]

Rigneault, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
[CrossRef] [PubMed]

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Sarkar, D.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

Scherer, A.

Shaffer, P. T. B.

Shegai, T.

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates,” ACS Nano5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

Sonnefraud, Y.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Walker, C.

Weeber, J.-C.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407 (2004).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
[CrossRef] [PubMed]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

ACS Nano (2)

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates,” ACS Nano5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antenn. Propag.55(11), 3018–3026 (2007).
[CrossRef]

J. Appl. Phys. (1)

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys.97(9), 094310 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

J. B. Jackson and N. J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105(14), 2743–2746 (2001).
[CrossRef]

Nano Lett. (1)

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

B. Jalali, “Teaching silicon new tricks,” Nat. Photonics1(4), 193–195 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Small (1)

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the Si waveguide and the core-shell particle.

Fig. 2
Fig. 2

Maximum total efficiency in the 500nm to 700 nm wavelength range as a function of the waveguide dimension and the waveguide-coreshell separation for different values of collision frequency. Γ0 represents the collision frequency of silver.

Fig. 3
Fig. 3

(a) Reflectance of the waveguide mode. (b) Fraction of the input power that is radiated into free space (Total efficiency). (c) Losses due to absorption in Ag. The different curves correspond to different separation between the waveguide and the surface of the core-shell, i.e. d. In all the cases the waveguide cross section is set to 200 nm × 200 nm and the collision frequency of the shell material is set to Γ0, the collision frequency of silver.

Fig. 4
Fig. 4

(a) Reflectance of the waveguide mode. (b) Fraction of the input power that is radiated into free space (Total efficiency). (c) Losses due to absorption in Ag. The different curves correspond to different values of Γ in the plasmonic shell. Γ0 represents the collision frequency of silver. In all the cases the waveguide cross section is set to 200 nm × 200 nm and the separation, d, is set to 70 nm.

Fig. 5
Fig. 5

Plot of the absolute value of the electric field for separation of d = 70 nm and waveguide cross section of 200 nm × 200 nm. (a) Wavelength = 620 nm, (b) Wavelength = 565 nm.

Fig. 6
Fig. 6

Far-field patterns of radiation from the waveguide for separation of d = 70 nm and waveguide cross section of 200 nm × 200 nm. (a) Wavelength = 620 nm, (b) Wavelength = 565 nm. The color represents the directivity.

Fig. 7
Fig. 7

Ratio of the forward radiated power to the total radiated power for various separations between the waveguide and the core-shell (a),and various collision frequency in the plasmonic shell material (b). In both cases the waveguide cross section is set to 200 nm × 200 nm. In (a) the collision frequency of the shell material is set to Γ0 and in (b) the separation, d, is set to 70 nm.

Fig. 8
Fig. 8

(a) Reflectance and (b) Total Efficiency shown as contour plots as function of wavelength and separation (d).

Fig. 9
Fig. 9

Reflectance as a function of separation of core-shell particle from the waveguide.

Metrics