Abstract

An approach to reconstruct a quasi-phase-matching grating by using a discrete layer-peeling algorithm is presented. Experimentally measured output spectra of Šolc-type filters, based on uniform and chirped QPM structures, are used in the discrete layer-peeling algorithm. The reconstructed QPM structures are in agreement with the exact structures used in the experiment and the method is verified to be accurate and efficient in quality inspection on quasi-phase-matching grating.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron.30, 1596–1604 (1994).
    [CrossRef]
  2. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
    [CrossRef]
  3. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan,“Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett.30, 634–636 (2005).
    [CrossRef] [PubMed]
  4. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasiphase-matched interactions,” Opt. Lett.31, 604–606 (2006).
    [CrossRef] [PubMed]
  5. T. Umeki, M. Asobe, T. Yanagawa, O. Tadanaga, Y. Nishida, K. Magari, and H. Suzuki, “Broadband wavelength conversion based on apodized χ(2) grating,” J. Opt. Soc. Am. B26, 2315–2322 (2009).
    [CrossRef]
  6. X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure, ” Opt. Express17, 16877–16884 (2009).
    [CrossRef] [PubMed]
  7. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27, 2191–2193 (2002).
    [CrossRef]
  8. X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002).
    [CrossRef]
  9. A. M. Schober, G. Imeshev, and M. M. Fejer, “Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation,” Opt. Lett.27, 1129–1131 (2002).
    [CrossRef]
  10. K. Beckwitt, F. Ö. Ilday, and F. W. Wise, “Frequency shifting with local nonlinearity management in nonuniformly poled quadratic nonlinear materials,” Opt. Lett.29, 763–765 (2004).
    [CrossRef] [PubMed]
  11. X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
    [CrossRef]
  12. H. Miao, S. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power second-harmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B25, A41–A53 (2008).
    [CrossRef]
  13. J. Shaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
    [CrossRef]
  14. J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
    [CrossRef]
  15. H. Li, T. Kumagai, and K. Ogusu, “Advanced design of a multichannel fiber Bragg grating based on a layer-peeling method,” J. Opt. Soc. Am. B21, 1929–1938 (2004).
    [CrossRef]
  16. Y. Choi, J. Chun, and J. Bae, “Numerically extrapolated discrete layer-peeling algorithm for synthesis of nonuniform fiber Bragg gratings,” Opt. Express19, 8254–8266 (2011).
    [CrossRef] [PubMed]
  17. E. C. Levy and M. Horowitz, “Layer-peeling algorithm for reconstructing the birefringence in optical emulators,” J. Opt. Soc. Am. B23, 1531–1539 (2006).
    [CrossRef]
  18. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28, 2115–2117 (2003).
    [CrossRef] [PubMed]
  19. Y. Q. Lu and Z. L. Wan, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77, 3719–3721 (2000).
    [CrossRef]
  20. Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012).
    [CrossRef]
  21. C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express15, 9859–9866 (2007).
    [CrossRef] [PubMed]
  22. X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004).
    [CrossRef]
  23. C. L. Chang, Y. H. Chen, C. H. Lin, and J. Y. Chang, “Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate,” Opt. Express16, 18535–18544 (2008).
    [CrossRef] [PubMed]
  24. Y. L. Lee, Y. C. Noh, C. S. Kee, N. E. Yu, W. Shin, C. Jung, D. K. Ko, and J. Lee, “Bandwidth control of a Ti:PPLN Šolc filter by a temperature-gradient-control technique,” Opt. Express16, 13699–13706 (2008).
    [CrossRef] [PubMed]
  25. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express15, 2548–2554 (2007).
    [CrossRef] [PubMed]
  26. C. S. Kee, Y. L. Lee, and J. Lee, “Electro- and thermo-optic effects on multi-wavelength Šolc filters based on χ(2) nonlinear quasi-periodic photonic crystals,” Opt. Express16, 6098–6103 (2008).
    [CrossRef] [PubMed]
  27. J. K. Brenne and J. Skaar, “Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms,” J. Lightwave. Technol.21, 254–263 (2003).
    [CrossRef]
  28. G. Lenz, B. J. Eggleton, and C. R. Giles, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron.34, 1390–1402 (1998).
    [CrossRef]
  29. L. Wang and T. Erdogan, “Layer peeling algorithm for reconstruction of long-period fibre gratings,” Electron. Lett.37, 154–156 (2001).
    [CrossRef]
  30. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997).
    [CrossRef]
  31. R. Feced and M. N. Zervas, “Efficient inverse scattering algorithm for the design of grating-assisted co-directional mode couplers,” J. Opt. Soc. Am. A17, 1573–1582 (2000).
    [CrossRef]
  32. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
    [CrossRef]

2012

Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012).
[CrossRef]

2011

2009

2008

2007

2006

2005

2004

2003

J. K. Brenne and J. Skaar, “Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms,” J. Lightwave. Technol.21, 254–263 (2003).
[CrossRef]

J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28, 2115–2117 (2003).
[CrossRef] [PubMed]

2002

2001

L. Wang and T. Erdogan, “Layer peeling algorithm for reconstruction of long-period fibre gratings,” Electron. Lett.37, 154–156 (2001).
[CrossRef]

J. Shaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

2000

Y. Q. Lu and Z. L. Wan, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77, 3719–3721 (2000).
[CrossRef]

R. Feced and M. N. Zervas, “Efficient inverse scattering algorithm for the design of grating-assisted co-directional mode couplers,” J. Opt. Soc. Am. A17, 1573–1582 (2000).
[CrossRef]

1998

G. Lenz, B. J. Eggleton, and C. R. Giles, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron.34, 1390–1402 (1998).
[CrossRef]

1997

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997).
[CrossRef]

1994

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron.30, 1596–1604 (1994).
[CrossRef]

Afeyan, B.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Ashihara, S.

X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure, ” Opt. Express17, 16877–16884 (2009).
[CrossRef] [PubMed]

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

Asobe, M.

Bae, J.

Beckwitt, K.

Brenne, J. K.

J. K. Brenne and J. Skaar, “Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms,” J. Lightwave. Technol.21, 254–263 (2003).
[CrossRef]

Cha, M.

Chang, C. L.

Chang, J. Y.

Charbonneau-Lefort, M.

Chen, X.

Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012).
[CrossRef]

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28, 2115–2117 (2003).
[CrossRef] [PubMed]

X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002).
[CrossRef]

Chen, Y.

X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure, ” Opt. Express17, 16877–16884 (2009).
[CrossRef] [PubMed]

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004).
[CrossRef]

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28, 2115–2117 (2003).
[CrossRef] [PubMed]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28, 2115–2117 (2003).
[CrossRef] [PubMed]

X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002).
[CrossRef]

X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002).
[CrossRef]

Chen, Y. H.

Cheng, X. P.

J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
[CrossRef]

Choi, Y.

Chou, M. H.

Chun, J.

Dong, B. Z.

Eggleton, B. J.

G. Lenz, B. J. Eggleton, and C. R. Giles, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron.34, 1390–1402 (1998).
[CrossRef]

Erdogan, T.

L. Wang and T. Erdogan, “Layer peeling algorithm for reconstruction of long-period fibre gratings,” Electron. Lett.37, 154–156 (2001).
[CrossRef]

J. Shaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997).
[CrossRef]

Fan, F. C.

Feced, R.

Fejer, M. M.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Giles, C. R.

G. Lenz, B. J. Eggleton, and C. R. Giles, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron.34, 1390–1402 (1998).
[CrossRef]

Gu, B. Y.

Gu, X.

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004).
[CrossRef]

Horowitz, M.

Huang, C. Y.

Huang, J.

Huang, Y. C.

Hum, D. S.

Ilday, F. Ö.

Imeshev, G.

Jung, C.

Kato, M.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron.30, 1596–1604 (1994).
[CrossRef]

Kee, C. S.

Ko, D. K.

Kumagai, T.

Kuroda, K.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

Langrock, C.

Lee, J.

Lee, Y. L.

Lee, Y. W.

Lenz, G.

G. Lenz, B. J. Eggleton, and C. R. Giles, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron.34, 1390–1402 (1998).
[CrossRef]

Levy, E. C.

Li, H.

Li, S. Y.

J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
[CrossRef]

Lin, C. H.

Lin, S. W.

Lu, Y. Q.

Y. Q. Lu and Z. L. Wan, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77, 3719–3721 (2000).
[CrossRef]

Magari, K.

Miao, H.

Ming, N. B.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron.30, 1596–1604 (1994).
[CrossRef]

Ng, J. H.

J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
[CrossRef]

Ngo, N. Q.

J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
[CrossRef]

Nishida, Y.

Noh, Y. C.

Ogusu, K.

Pang, F.

Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012).
[CrossRef]

Roussev, R. V.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Sato, H.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron.30, 1596–1604 (1994).
[CrossRef]

Schober, A. M.

Shaar, J.

J. Shaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

Shi, J.

Shimura, T.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

Shin, W.

Shum, P.

J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
[CrossRef]

Skaar, J.

J. K. Brenne and J. Skaar, “Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms,” J. Lightwave. Technol.21, 254–263 (2003).
[CrossRef]

Suzuki, H.

Tadanaga, O.

Umeki, T.

Wan, Z. L.

Y. Q. Lu and Z. L. Wan, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77, 3719–3721 (2000).
[CrossRef]

Wang, L.

L. Wang and T. Erdogan, “Layer peeling algorithm for reconstruction of long-period fibre gratings,” Electron. Lett.37, 154–156 (2001).
[CrossRef]

Wang, L. G.

J. Shaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

Wang, T.

Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012).
[CrossRef]

X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure, ” Opt. Express17, 16877–16884 (2009).
[CrossRef] [PubMed]

Wang, Z.

Weiner, A. M.

Wise, F. W.

Wu, F.

X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002).
[CrossRef]

Xia, Y.

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28, 2115–2117 (2003).
[CrossRef] [PubMed]

X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002).
[CrossRef]

Xie, X. P.

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron.30, 1596–1604 (1994).
[CrossRef]

Yanagawa, T.

Yang, S.

Yu, N. E.

Zeng, X.

Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012).
[CrossRef]

X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure, ” Opt. Express17, 16877–16884 (2009).
[CrossRef] [PubMed]

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004).
[CrossRef]

X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002).
[CrossRef]

Zervas, M. N.

Zhang, J.

J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
[CrossRef]

Zhang, Q.

Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012).
[CrossRef]

Zhu, S. N.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

Zhu, Y.

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

Appl. Phys. B

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Appl. Phys. Lett.

Y. Q. Lu and Z. L. Wan, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77, 3719–3721 (2000).
[CrossRef]

Electron. Lett.

L. Wang and T. Erdogan, “Layer peeling algorithm for reconstruction of long-period fibre gratings,” Electron. Lett.37, 154–156 (2001).
[CrossRef]

IEEE J. Quantum Electron.

G. Lenz, B. J. Eggleton, and C. R. Giles, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron.34, 1390–1402 (1998).
[CrossRef]

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron.30, 1596–1604 (1994).
[CrossRef]

J. Shaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Zhang, P. Shum, S. Y. Li, N. Q. Ngo, X. P. Cheng, and J. H. Ng, “Design and fabrication of flat-band long-period grating,” IEEE Photon. Technol. Lett.15, 1558–1560 (2003).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997).
[CrossRef]

J. Lightwave. Technol.

J. K. Brenne and J. Skaar, “Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms,” J. Lightwave. Technol.21, 254–263 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008).
[CrossRef]

X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun.204, 407–411 (2002).
[CrossRef]

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband multiple wavelengths filter in aperiodic optical superlattice,” Opt. Commun.237, 53–58 (2004).
[CrossRef]

Opt. Express

Y. Choi, J. Chun, and J. Bae, “Numerically extrapolated discrete layer-peeling algorithm for synthesis of nonuniform fiber Bragg gratings,” Opt. Express19, 8254–8266 (2011).
[CrossRef] [PubMed]

Y. L. Lee, Y. C. Noh, C. S. Kee, N. E. Yu, W. Shin, C. Jung, D. K. Ko, and J. Lee, “Bandwidth control of a Ti:PPLN Šolc filter by a temperature-gradient-control technique,” Opt. Express16, 13699–13706 (2008).
[CrossRef] [PubMed]

C. L. Chang, Y. H. Chen, C. H. Lin, and J. Y. Chang, “Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate,” Opt. Express16, 18535–18544 (2008).
[CrossRef] [PubMed]

X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure, ” Opt. Express17, 16877–16884 (2009).
[CrossRef] [PubMed]

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express15, 2548–2554 (2007).
[CrossRef] [PubMed]

C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express15, 9859–9866 (2007).
[CrossRef] [PubMed]

C. S. Kee, Y. L. Lee, and J. Lee, “Electro- and thermo-optic effects on multi-wavelength Šolc filters based on χ(2) nonlinear quasi-periodic photonic crystals,” Opt. Express16, 6098–6103 (2008).
[CrossRef] [PubMed]

Opt. Laser Technol.

Q. Zhang, X. Zeng, F. Pang, X. Chen, and T. Wang, “Tunable polarization-independent Šolc-type wavelength filter based on periodically poled lithium niobate,” Opt. Laser Technol.44, 1992–1994 (2012).
[CrossRef]

Opt. Lett.

Science

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The discretized coupling model of ordinary and extraordinary waves based on QPM structure.

Fig. 2
Fig. 2

(a) Experimental setup of tunable Šolc filter based on QPM structure; (b) the output spectrum of C+L broadband ASE source.

Fig. 3
Fig. 3

(a) Normalized transmission spectrum at 35.5°C based on uniform QPM grating; (b) comparison between the reconstructed and the nominal uniform QPM gratings.

Fig. 4
Fig. 4

Normalized transmission spectra (a) linearly chirped grating at 55°C; (b) quadratically chirped grating at 60°C.

Fig. 5
Fig. 5

Comparison between the reconstructed and nominal linearly and quadratically chirped QPM gratings.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d A o ( z , Δ β ) d z = i κ ( z ) A e exp ( i Δ β z )
d A e ( z , Δ β ) d z = i κ * ( z ) A o exp ( i Δ β z )
[ A o , j + 1 ( Δ β ) A e , j + 1 ( Δ β ) ] = G Δ G ρ [ A o , j ( Δ β ) A e , j ( Δ β ) ]
κ ( z j ) = 1 Δ z ρ j * | ρ j | arctan ( | ρ j | )
A o ( e ) , j ( Δ β ) = τ = 0 N a o ( e ) , j ( τ ) exp ( i 2 Δ β Δ z τ )
a o ( e ) , j ( τ ) = [ a o ( e ) , j ( 0 ) a o ( e ) , j ( 1 ) a o ( e ) , j ( N ) ]
ρ N = a e , N ( 0 ) a o , N ( 0 )
d ϕ ( z j ) d z = 2 π z j Λ j 2 d Λ j d z

Metrics