Abstract

A distributed hot-wire anemometer based on Brillouin optical time-domain analysis is presented. The anemometer is created by passing a current through a stainless steel tube fibre bundle and monitoring Brillouin frequency changes in the presence of airflow. A wind tunnel is used to provide laminar airflow while the device response is calibrated against theoretical models. The sensitivity equation for this anemometer is derived and discussed. Airspeeds from 0 ms to 10 ms are examined, and the results show that a Brillouin scattering based distributed hot-wire anemometer is feasible.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi and M. Tateda, “Botda-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [CrossRef]
  2. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
  3. M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
    [CrossRef]
  4. R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
    [CrossRef]
  5. K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).
  6. H. H. Bruun, Hot-wire Anemometry: Principles and Signal Analysis (Oxford University Press, 1995)
  7. L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
    [CrossRef]
  8. S. Gao, A. Zhang, H. Tam, L. Cho, and C. Lu, “All–optical fiber anemometer based on laser heated fiber bragg gratings,” Opt. Express 19(11), 10124–10130 (2011).
    [CrossRef] [PubMed]
  9. I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).
  10. T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot-wire grid,” Opt. Express 20(8), 8240–8249 (2012).
    [CrossRef] [PubMed]
  11. P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
    [CrossRef]
  12. A. Brown, B. Colpitts, and K. Brown, “Dark-pulse brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [CrossRef]
  13. F. P. Incropera and D. P DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2002)

2012 (1)

2011 (1)

2007 (1)

2006 (1)

I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).

2005 (1)

L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
[CrossRef]

2003 (1)

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[CrossRef]

2000 (1)

K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).

1999 (1)

M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[CrossRef]

1996 (1)

P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
[CrossRef]

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

1989 (1)

T. Horiguchi and M. Tateda, “Botda-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

Bao, X.

M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[CrossRef]

Bernini, R.

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[CrossRef]

Bosselmann, T.

I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).

Bremner, T.

M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[CrossRef]

Brown, A.

A. Brown, B. Colpitts, and K. Brown, “Dark-pulse brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
[CrossRef]

M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[CrossRef]

Brown, K.

Bruun, H. H.

H. H. Bruun, Hot-wire Anemometry: Principles and Signal Analysis (Oxford University Press, 1995)

Cashdollar, L. J.

L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
[CrossRef]

Chen, K. P.

T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot-wire grid,” Opt. Express 20(8), 8240–8249 (2012).
[CrossRef] [PubMed]

L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
[CrossRef]

Chen, R.

Chen, T.

Cho, L.

Colpitts, B.

Crocco, L.

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[CrossRef]

DeMerchant, M.

M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[CrossRef]

DeWitt, D. P

F. P. Incropera and D. P DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2002)

Ecke, W.

I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Gao, S.

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

T. Horiguchi and M. Tateda, “Botda-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

Hotate, K.

K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).

Incropera, F. P.

F. P. Incropera and D. P DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2002)

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Latka, I.

I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).

Lu, C.

Minardo, A.

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[CrossRef]

Newson, T. P.

P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
[CrossRef]

Soldovieri, F.

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[CrossRef]

Tam, H.

Tanaka, M.

K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).

Tateda, M.

T. Horiguchi and M. Tateda, “Botda-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

Wait, P. C.

P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
[CrossRef]

Wang, Q.

Willsch, M.

I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).

Zeni, L.

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[CrossRef]

Zhang, A.

Zhang, B.

IEEE Sensors (2)

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[CrossRef]

L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
[CrossRef]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

J. Lightwave Technol. (2)

T. Horiguchi and M. Tateda, “Botda-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

A. Brown, B. Colpitts, and K. Brown, “Dark-pulse brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
[CrossRef]

Opt. Commun. (1)

P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
[CrossRef]

Opt. Express (2)

Proc. SPIE (3)

I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).

M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[CrossRef]

K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).

Other (2)

H. H. Bruun, Hot-wire Anemometry: Principles and Signal Analysis (Oxford University Press, 1995)

F. P. Incropera and D. P DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The University of New Brunswick custom designed Dark-Pulse based BOTDA system used for measurement of temperature and/or strain. (EOM - electro-optic modulator, D1 & D2 - photodetectors).

Fig. 2
Fig. 2

Stainless steel jacketed fibre used as a hot-wire anemometer. To heat the tubing a current is passed through it using an external power supply.

Fig. 3
Fig. 3

The wind tunnel cross section. A stainless steel tube fibre bundle was secured across the diagonal of the UNB wind tunnel so that approximately 77 cm of the sensor was exposed to laminar airflow. One end of the sensor has two fibres spliced together and the other end has two fibre connectors which are attached to the BOTDA system.

Fig. 4
Fig. 4

Brillouin frequency response of the first fibre in the anemometer for a jacket current of 4.5 A. The seven points shown are used to determine the airspeed across the exposed portion of the sensor. Note, mps = meters per second.

Fig. 5
Fig. 5

Calculated anemometer response from the results of the 4.5 A jacket current. Seven sequential measurements were averaged across each fibre and the results show good agreement between both curves. The error bars show ± 1 standard deviation, and the inset graph is a zoomed portion of the larger graph.

Fig. 6
Fig. 6

Brillouin frequency response of the first fibre in the anemometer for a jacket current of 6 A. The seven points shown are used to determine the airspeed across the exposed portion of the sensor. Note, mps = meters per second.

Fig. 7
Fig. 7

Calculated anemometer response from the results obtained in Fig. 4. Seven sequential measurements were averaged across the exposed sensor section to determine the Brillouin frequency. The error bars show ± 1 standard deviation, and the inset graph is a zoomed portion of the larger graph.

Fig. 8
Fig. 8

Distributed airspeed measurements taken across the heated portion of the Brillouin hot-wire anemometer for two airspeeds, 2 m s and 3.5 m s. The portion between 19.25 m and 19.4 m shows where the transition between the wind tunnel and the still air occurs. Note, mps = meters per second.

Fig. 9
Fig. 9

Sensitivity of the Brillouin hot-wire anemometer. The results are calculated from experimentally measured values.

Tables (2)

Tables Icon

Table 1 Curve Fit Parameters for 4.5 A

Tables Icon

Table 2 Curve Fit Parameters for 6 A

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f B ( z ) = f B 0 + C ε ε + C T Δ T
I 2 R w = h A w ( T w T f )
I 2 R w = ( f w f f ) ( A + B U n )
Bi = h L c k
Bi = 132 W m 2 K 0.06 m m 16.2 W m K Bi = 0.005
d Δ f d U = P n B U n 1 ( A + B U n ) 2

Metrics