Abstract

Adaptive optics provide real-time compensation for atmospheric turbulence. The correction quality relies on a key element: the wavefront sensor. We have designed an adaptive optics system in the mid-infrared range providing high spatial resolution for ground-to-air applications, integrating a Shack-Hartmann infrared wavefront sensor operating on an extended source. This paper describes and justifies the design of the infrared wavefront sensor, while defining and characterizing the Shack-Hartmann wavefront sensor camera. Performance and illustration of field tests are also reported.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Robert, J.-M. Conan, V. Michau, T. Fusco, and N. Védrenne, “Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing,” J. Opt. Soc. Am. A 23, 613–624 (2006).
    [CrossRef]
  2. N. Védrenne, V. Michau, C. Robert, and J.-M. Conan, “Shack-Hartmann wavefront estimation with extended sources: Anisoplanatism influence,” J. Opt. Soc. Am. A 24, 2980–2993 (2007).
    [CrossRef]
  3. V. Michau, G. Rousset, and J.-C. Fontanella, “Wavefront sensing from extended sources,” in Real Time and Post Facto Solar Image Correction, R. R. Radick, eds., 13 of NSO/SP Summer Workshop Series, 124–128 (1992).
  4. L. Poyneer, “Scene-based Shack-Hartmann wave-front sensing: analysis and simulation,” Appl. Opt. 42, 5807–5815 (2003).
    [CrossRef] [PubMed]
  5. E. Sidick, J. Green, R. M. Morgan, C. M. Ohara, and D. C. Redding, “Adaptive cross-correlation algorithm for extended scene Shack-Hartmann wavefront sensing,” Opt. Lett. 33, 213–215 (2008).
    [CrossRef] [PubMed]
  6. J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43, 251–256 (2004).
    [CrossRef]
  7. H. J. Tiziani and J. H. Chen, “Shack-Hartmann sensor for fast infrared wave-front testing,” J. Mod. Opt. 44, 535–541 (1997).
    [CrossRef]
  8. D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.
  9. E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).
  10. M. Vuillermet and P. Chorier, “Latest SOFRADIR technology developments usable for space applications,” in Sensors, Systems, and Next-Generation Satellites X, R. Meynart, S. P. Neeck, and H. Shimoda, eds., Proc. SPIE6361, 63611C (2006).
  11. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–333 (2006).
    [CrossRef]
  12. C. Robert, J.-M. Conan, D. Gratadour, L. Schreiber, and T. Fusco, “Tomographic wavefront error using multi-LGS constellation sensed with Shack-Hartmann wavefront sensors,” J. Opt. Soc. Am. A 27, A201–A215 (2010).
    [CrossRef]
  13. D. Gratadour, L. M. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator,” Astron. Astrophys. 443, 357–365 (2005).
    [CrossRef]
  14. N. Védrenne, V. Michau, C. Robert, and J.-M. Conan, “Cn2 profile measurement from Shack-Hartmann data,” Opt. Lett. 32, 2659–2661 (2007).
    [CrossRef] [PubMed]
  15. N. Védrenne, A. Bonnefois Montmerle, C. Robert, V. Michau, J. Montri, and B. Fleury, “Cn2 profile measurement from Shack-Hartmann data: experimental validation and exploitation,” in Optics in Atmospheric Propagation and Adaptive Systems XIII, Proc. SPIE7828, 78280B (2010).
  16. C. Robert, B. Fleury, V. Michau, J.-M. Conan, L. Veyssire, S. Magli, and V. Vial, “Shack-Hartmann wavefront sensor on mid-IR extended source,” in Optics in Atmospheric Propagation and Adaptive Systems, K. Stein, A. Kohnle, and J. D. Gonglewski, eds., Proc. SPIE6747, 67470H (2007).
  17. P. Feautrier, “A decadal survey of AO wavefront sensing detector developments in Europe,” in Adaptive Optics for Extremely Large Telescopes (AO4ELT) 2011.

2010 (1)

2008 (1)

2007 (2)

2006 (2)

C. Robert, J.-M. Conan, V. Michau, T. Fusco, and N. Védrenne, “Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing,” J. Opt. Soc. Am. A 23, 613–624 (2006).
[CrossRef]

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–333 (2006).
[CrossRef]

2005 (1)

D. Gratadour, L. M. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator,” Astron. Astrophys. 443, 357–365 (2005).
[CrossRef]

2004 (1)

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43, 251–256 (2004).
[CrossRef]

2003 (1)

1997 (1)

H. J. Tiziani and J. H. Chen, “Shack-Hartmann sensor for fast infrared wave-front testing,” J. Mod. Opt. 44, 535–541 (1997).
[CrossRef]

Bonnefois Montmerle, A.

N. Védrenne, A. Bonnefois Montmerle, C. Robert, V. Michau, J. Montri, and B. Fleury, “Cn2 profile measurement from Shack-Hartmann data: experimental validation and exploitation,” in Optics in Atmospheric Propagation and Adaptive Systems XIII, Proc. SPIE7828, 78280B (2010).

Charton, J.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Chen, J. H.

H. J. Tiziani and J. H. Chen, “Shack-Hartmann sensor for fast infrared wave-front testing,” J. Mod. Opt. 44, 535–541 (1997).
[CrossRef]

Chorier, P.

M. Vuillermet and P. Chorier, “Latest SOFRADIR technology developments usable for space applications,” in Sensors, Systems, and Next-Generation Satellites X, R. Meynart, S. P. Neeck, and H. Shimoda, eds., Proc. SPIE6361, 63611C (2006).

Clark, S.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Collin, C.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Conan, J.-M.

Feautrier, P.

P. Feautrier, “A decadal survey of AO wavefront sensing detector developments in Europe,” in Adaptive Optics for Extremely Large Telescopes (AO4ELT) 2011.

Fleury, B.

C. Robert, B. Fleury, V. Michau, J.-M. Conan, L. Veyssire, S. Magli, and V. Vial, “Shack-Hartmann wavefront sensor on mid-IR extended source,” in Optics in Atmospheric Propagation and Adaptive Systems, K. Stein, A. Kohnle, and J. D. Gonglewski, eds., Proc. SPIE6747, 67470H (2007).

N. Védrenne, A. Bonnefois Montmerle, C. Robert, V. Michau, J. Montri, and B. Fleury, “Cn2 profile measurement from Shack-Hartmann data: experimental validation and exploitation,” in Optics in Atmospheric Propagation and Adaptive Systems XIII, Proc. SPIE7828, 78280B (2010).

Fontanella, J.-C.

V. Michau, G. Rousset, and J.-C. Fontanella, “Wavefront sensing from extended sources,” in Real Time and Post Facto Solar Image Correction, R. R. Radick, eds., 13 of NSO/SP Summer Workshop Series, 124–128 (1992).

Fusco, T.

Gappinger, R.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Gendron, E.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Giles, M. K.

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43, 251–256 (2004).
[CrossRef]

Gratadour, D.

Green, J.

Greivenkamp, J. E.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Gupta, A.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Hubin, N.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Lacombe, F.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Lee, J.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Lefort, B.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Lerner, S. A.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Lizon, J.-L.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Magli, S.

C. Robert, B. Fleury, V. Michau, J.-M. Conan, L. Veyssire, S. Magli, and V. Vial, “Shack-Hartmann wavefront sensor on mid-IR extended source,” in Optics in Atmospheric Propagation and Adaptive Systems, K. Stein, A. Kohnle, and J. D. Gonglewski, eds., Proc. SPIE6747, 67470H (2007).

Marlot, C.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Marushin, P.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Michau, V.

N. Védrenne, V. Michau, C. Robert, and J.-M. Conan, “Shack-Hartmann wavefront estimation with extended sources: Anisoplanatism influence,” J. Opt. Soc. Am. A 24, 2980–2993 (2007).
[CrossRef]

N. Védrenne, V. Michau, C. Robert, and J.-M. Conan, “Cn2 profile measurement from Shack-Hartmann data,” Opt. Lett. 32, 2659–2661 (2007).
[CrossRef] [PubMed]

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–333 (2006).
[CrossRef]

C. Robert, J.-M. Conan, V. Michau, T. Fusco, and N. Védrenne, “Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing,” J. Opt. Soc. Am. A 23, 613–624 (2006).
[CrossRef]

V. Michau, G. Rousset, and J.-C. Fontanella, “Wavefront sensing from extended sources,” in Real Time and Post Facto Solar Image Correction, R. R. Radick, eds., 13 of NSO/SP Summer Workshop Series, 124–128 (1992).

N. Védrenne, A. Bonnefois Montmerle, C. Robert, V. Michau, J. Montri, and B. Fleury, “Cn2 profile measurement from Shack-Hartmann data: experimental validation and exploitation,” in Optics in Atmospheric Propagation and Adaptive Systems XIII, Proc. SPIE7828, 78280B (2010).

C. Robert, B. Fleury, V. Michau, J.-M. Conan, L. Veyssire, S. Magli, and V. Vial, “Shack-Hartmann wavefront sensor on mid-IR extended source,” in Optics in Atmospheric Propagation and Adaptive Systems, K. Stein, A. Kohnle, and J. D. Gonglewski, eds., Proc. SPIE6747, 67470H (2007).

Michet, G.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Montri, J.

N. Védrenne, A. Bonnefois Montmerle, C. Robert, V. Michau, J. Montri, and B. Fleury, “Cn2 profile measurement from Shack-Hartmann data: experimental validation and exploitation,” in Optics in Atmospheric Propagation and Adaptive Systems XIII, Proc. SPIE7828, 78280B (2010).

Morgan, R. M.

Mugnier, L. M.

D. Gratadour, L. M. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator,” Astron. Astrophys. 443, 357–365 (2005).
[CrossRef]

Nicol, G.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Nicolle, M.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–333 (2006).
[CrossRef]

Ohara, C. M.

Pau, S.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Phan, V. D.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Poyneer, L.

Redding, D. C.

Rha, J.

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43, 251–256 (2004).
[CrossRef]

Robert, C.

C. Robert, J.-M. Conan, D. Gratadour, L. Schreiber, and T. Fusco, “Tomographic wavefront error using multi-LGS constellation sensed with Shack-Hartmann wavefront sensors,” J. Opt. Soc. Am. A 27, A201–A215 (2010).
[CrossRef]

N. Védrenne, V. Michau, C. Robert, and J.-M. Conan, “Shack-Hartmann wavefront estimation with extended sources: Anisoplanatism influence,” J. Opt. Soc. Am. A 24, 2980–2993 (2007).
[CrossRef]

N. Védrenne, V. Michau, C. Robert, and J.-M. Conan, “Cn2 profile measurement from Shack-Hartmann data,” Opt. Lett. 32, 2659–2661 (2007).
[CrossRef] [PubMed]

C. Robert, J.-M. Conan, V. Michau, T. Fusco, and N. Védrenne, “Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing,” J. Opt. Soc. Am. A 23, 613–624 (2006).
[CrossRef]

N. Védrenne, A. Bonnefois Montmerle, C. Robert, V. Michau, J. Montri, and B. Fleury, “Cn2 profile measurement from Shack-Hartmann data: experimental validation and exploitation,” in Optics in Atmospheric Propagation and Adaptive Systems XIII, Proc. SPIE7828, 78280B (2010).

C. Robert, B. Fleury, V. Michau, J.-M. Conan, L. Veyssire, S. Magli, and V. Vial, “Shack-Hartmann wavefront sensor on mid-IR extended source,” in Optics in Atmospheric Propagation and Adaptive Systems, K. Stein, A. Kohnle, and J. D. Gonglewski, eds., Proc. SPIE6747, 67470H (2007).

Rouan, D.

D. Gratadour, L. M. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator,” Astron. Astrophys. 443, 357–365 (2005).
[CrossRef]

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Rousset, G.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–333 (2006).
[CrossRef]

V. Michau, G. Rousset, and J.-C. Fontanella, “Wavefront sensing from extended sources,” in Real Time and Post Facto Solar Image Correction, R. R. Radick, eds., 13 of NSO/SP Summer Workshop Series, 124–128 (1992).

Sasian, J.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Schreiber, L.

Sidick, E.

Smith, D.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Talureau, B.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

Thomas, S.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–333 (2006).
[CrossRef]

Tiziani, H. J.

H. J. Tiziani and J. H. Chen, “Shack-Hartmann sensor for fast infrared wave-front testing,” J. Mod. Opt. 44, 535–541 (1997).
[CrossRef]

Tokovinin, A.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–333 (2006).
[CrossRef]

Védrenne, N.

Veyssire, L.

C. Robert, B. Fleury, V. Michau, J.-M. Conan, L. Veyssire, S. Magli, and V. Vial, “Shack-Hartmann wavefront sensor on mid-IR extended source,” in Optics in Atmospheric Propagation and Adaptive Systems, K. Stein, A. Kohnle, and J. D. Gonglewski, eds., Proc. SPIE6747, 67470H (2007).

Vial, V.

C. Robert, B. Fleury, V. Michau, J.-M. Conan, L. Veyssire, S. Magli, and V. Vial, “Shack-Hartmann wavefront sensor on mid-IR extended source,” in Optics in Atmospheric Propagation and Adaptive Systems, K. Stein, A. Kohnle, and J. D. Gonglewski, eds., Proc. SPIE6747, 67470H (2007).

Voelz, D. G.

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43, 251–256 (2004).
[CrossRef]

Vuillermet, M.

M. Vuillermet and P. Chorier, “Latest SOFRADIR technology developments usable for space applications,” in Sensors, Systems, and Next-Generation Satellites X, R. Meynart, S. P. Neeck, and H. Shimoda, eds., Proc. SPIE6361, 63611C (2006).

Williby, G.

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

Appl. Opt. (1)

Astron. Astrophys. (1)

D. Gratadour, L. M. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator,” Astron. Astrophys. 443, 357–365 (2005).
[CrossRef]

J. Mod. Opt. (1)

H. J. Tiziani and J. H. Chen, “Shack-Hartmann sensor for fast infrared wave-front testing,” J. Mod. Opt. 44, 535–541 (1997).
[CrossRef]

J. Opt. Soc. Am. A (3)

Mon. Not. R. Astron. Soc. (1)

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–333 (2006).
[CrossRef]

Opt. Eng. (1)

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43, 251–256 (2004).
[CrossRef]

Opt. Lett. (2)

Other (7)

V. Michau, G. Rousset, and J.-C. Fontanella, “Wavefront sensing from extended sources,” in Real Time and Post Facto Solar Image Correction, R. R. Radick, eds., 13 of NSO/SP Summer Workshop Series, 124–128 (1992).

D. Smith, J. E. Greivenkamp, R. Gappinger, G. Williby, P. Marushin, A. Gupta, S. A. Lerner, S. Clark, J. Lee, and J. Sasian, “Infrared Shack-Hartmann wavefront sensor for conformal dome metrology,” in Optical Fabrication and Testing, of OSA Technical Digest (Optical Society of America, 2000), paper OTuC4.

E. Gendron, F. Lacombe, D. Rouan, J. Charton, C. Collin, B. Lefort, C. Marlot, G. Michet, G. Nicol, S. Pau, V. D. Phan, B. Talureau, J.-L. Lizon, and N. Hubin, “NAOS infrared wavefront sensor design and performance,” in Adaptive Optical System Technologies II, P. Wizinowich and D. Bonaccini, eds., Proc. SPIE4839, 195–205 (2003).

M. Vuillermet and P. Chorier, “Latest SOFRADIR technology developments usable for space applications,” in Sensors, Systems, and Next-Generation Satellites X, R. Meynart, S. P. Neeck, and H. Shimoda, eds., Proc. SPIE6361, 63611C (2006).

N. Védrenne, A. Bonnefois Montmerle, C. Robert, V. Michau, J. Montri, and B. Fleury, “Cn2 profile measurement from Shack-Hartmann data: experimental validation and exploitation,” in Optics in Atmospheric Propagation and Adaptive Systems XIII, Proc. SPIE7828, 78280B (2010).

C. Robert, B. Fleury, V. Michau, J.-M. Conan, L. Veyssire, S. Magli, and V. Vial, “Shack-Hartmann wavefront sensor on mid-IR extended source,” in Optics in Atmospheric Propagation and Adaptive Systems, K. Stein, A. Kohnle, and J. D. Gonglewski, eds., Proc. SPIE6747, 67470H (2007).

P. Feautrier, “A decadal survey of AO wavefront sensing detector developments in Europe,” in Adaptive Optics for Extremely Large Telescopes (AO4ELT) 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Main components of the cooled Shack-Hartmann wavefront sensor. Dimensions are in mm. Angles are in radians.

Fig. 2
Fig. 2

Geometry of the cold pupil with a central obscuration.

Fig. 3
Fig. 3

Array of 5×5 square refractive silicon lenslets a) to be etched by a photo-lithography process. b) specification of the profile of a microlens-sectional view compared to a parabola and c) zoom on one microlens. The squared microlens fill factor is 100 %.

Fig. 4
Fig. 4

SH WFS model: light unit and detector assembled inside dewar.

Fig. 5
Fig. 5

Mid-IR SH WFS mounted with its Stirling cooler. Scale: 2 cm spacing between bench holes.

Fig. 6
Fig. 6

Simulation of the thermal gradient inside the cryostat. Colors represent the temperatures in Kelvin.

Fig. 7
Fig. 7

SH WFS first sub-images at the focal plane array of quasi-point-like object. Sub image number one is on top left corner. Numbering follows line by line from left to right.

Fig. 8
Fig. 8

Spectral response measurement of the SH WFS (y-axis) in arbitrary units as a function of the wavelength (x-axis) in micrometer, detector being at cryogenic temperature.

Fig. 9
Fig. 9

Measurement of camera linearity for 3 × 3 subapertures at the center of the microlens array (plot arrangement follows subaperture geometry in the pupil). Signal in ADU as a function of time exposure in microseconds.

Fig. 10
Fig. 10

Variance of the signal σ S A D U 2 in ADU2 as a function of averaged signal ADU in ADU for the 3 × 3 subapertures at the center of the microlens array. The linear fit is superimposed (dotted line). The dashed-dotted line corresponds to noise floor σ noise 2.

Fig. 11
Fig. 11

Mechanical housing for the Shack-Hartmann wavefront sensor, to prevent vibration of the Stirling cooler.

Fig. 12
Fig. 12

PSD of spot position (horizontal).

Fig. 13
Fig. 13

PSD of spot position (vertical).

Fig. 14
Fig. 14

Modulation Transfer Function of the 3 × 3 microlenses not obscured as a function of the spatial frequency in the FPA. Straight line represents the MTF measured. Dashed line represents the theoretical MTF. Dotted line represents the pixel MTF.

Fig. 15
Fig. 15

Shack-Hartmann images including noise and background with high contrast object (0.4), left, and low contrast object (0.04), right. Images under-sampled at Shannon/2; size is 25 × 25 pixels.

Fig. 16
Fig. 16

Slope wavefront errors as a function of the subaperture obscuration.

Fig. 17
Fig. 17

Images recorded with the full pupil camera for imagery. Left: image of the fixed target without correction of the turbulence. Right: the same image with AO correction. The imaging wavelength spans 3.4 – 4.2 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N c = I 1 + I 2 2
σ c 2 = ( I 2 I 1 ) 2 ( I 2 I 1 ) 2 2
S A D U = G N phe + Offset + noise
σ S A D U 2 = G ( S ¯ A D U Offset ) + σ noise 2
i ( x , y ) = E S F ( x ) = L S F ( x ) * heav ( x )
M T F ( f ) = T F ( L S F ( x ) ) = T F ( d d x E S F ( x ) )

Metrics