Abstract

We propose and analyse a GaAs-based optical switch having a ring resonator configuration which can switch optical telecommunication signals over the 1300 nm and 1500 nm bands, using bias assisted carrier injection as the switching mechanism. The switching is achieved through variation in the refractive index of the ring resonator produced by changing the injected carrier density through the application of bias voltage. Detail analysis of the switching characteristics reveals that the amount of switching depends on the refractive index change, which indeed is a strong function of injected carrier density and applied bias voltage. An isolation of 25 dB can be achieved during the ON state, while more than 40 dB isolation is realised during the OFF state. More importantly, our analysis shows that the proposed GaAs-based switch can operate over the 1300 nm and 1500 nm optical telecommunication bands, that are much farther from the bandgap of the GaAs material, without the need for “conventional” Indium based ternary and quaternary semiconductor materials. It therefore extends the usable wavelength of GaAs based optoelectronic devices. Furthermore, we have presented detail calculations to quantify power-delay metric of the proposed device. The proposed optical switch maintains a smaller footprint as when compared to Mach-Zehnder Interferometer or Directional Coupler based switches therefore, making it suitable for large scale integration and implementing next generation optical interconnects, optical communication and computing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shimomura and S. Arai, “Semiconductor waveguide optical switches and modulators,” Fiber Int. Opt.13, 65–100 (1992).
    [CrossRef]
  2. R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microw. Theory Tech.30, 1121–1137 (1982).
    [CrossRef]
  3. T. Tamir, Integrated Optics (Springer-Verlang, 1979).
  4. G. I. Papadimitriou, C. Papazoglou, A. S. Pomportsis, and I. Tutorial, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol.21, 384–405 (2003).
    [CrossRef]
  5. P.K. Basu, Theory of Optical Processes in Semiconductors-Bulk and Microstructures, (Oxford Science Publications, 1997).
  6. O. Mikami and H. Nakagome, “Waveguided optical switch in InGaAs/InP using free-carrier plasma dispersion,” Electron. Lett.20, 228–229 (1984).
    [CrossRef]
  7. N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech.47, 1151–1171 (1999).
    [CrossRef]
  8. G. Li and P. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol.21, 2010–2030 (2003).
    [CrossRef]
  9. S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
    [CrossRef]
  10. F. Ito and T. Tanifuji, “Carrier-injection-type optical switch in GaAs with a 1.06–1.55μm wavelength range,” Appl. Phys. Lett.54, 134–136 (1989).
    [CrossRef]
  11. S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
    [CrossRef]
  12. G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, “Low current plasma effect optical switch on InP,” Electron. Lett.26, 115–117 (1990).
    [CrossRef]
  13. H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010)
    [CrossRef]
  14. Chao Li, Linjie Zhou, and Andrew W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15, 5069–5076 (2007).
    [CrossRef] [PubMed]
  15. T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
    [CrossRef]
  16. B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15, 998–1005 (1997).
    [CrossRef]
  17. D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: experiment and simulation,” Jpn. J. Appl. Phys.41, 1186–1189 (2002).
    [CrossRef]
  18. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express18, 16858–16867 (2010).
    [CrossRef] [PubMed]
  19. T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005).
    [CrossRef]
  20. T. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6, 743–757 (1988).
    [CrossRef]
  21. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23, 1800–1807, (2005).
    [CrossRef]
  22. S. Ravindran, K. Alameh, and Y.-T. Lee, “Design and analysis of electroabsorptive quantum well based double ring resonators for wavelength switching applications,” Opt. Quantum Electron.41, 635–644 (2009).
    [CrossRef]
  23. K. Djordjev, S.-J. Choi, S.-J. Choi, and P. Dapkus, “Active semiconductor microdisk devices,” J. Lightwave Technol.20, 105–113 (2002).
    [CrossRef]
  24. B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
    [CrossRef]
  25. K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14, 828–830 (2002).
    [CrossRef]
  26. J. Piprek, Semiconductor Optoelectronic Devices-Introduction to Physics and Simulation (Academic Press, 2003).
  27. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science, 2008).
    [CrossRef]
  28. J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron.30, 1801–1816 (1994).
    [CrossRef]
  29. C. Glingener, D. Schulz, and E. Voges, “Modeling of optical waveguide modulators on III–V semiconductors,” IEEE J. Quantum Electron.31, 101–112 (1995).
    [CrossRef]
  30. K.J. Ebeling, Integrated Optoelectronics (Springer-Verlang, 1992).
  31. J. Faist and F.-K. Reinhart, “Phase modulation in GaAs/AlGaAs double heterostructures. I. theory,” J. Appl. Phys.67, 6998–7005 (1990).
    [CrossRef]
  32. B. Bennett and R. Soref, “Electrorefraction and electroabsorption in InP, GaAs, GaSb, InAs, and InSb,” IEEE J. Quantum Electron.23, 2159–2166 (1987).
    [CrossRef]
  33. J. G. Mendoza-Alvarez, R. H. Yan, and L. A. Coldren, “Contribution of the band-filling effect to the effective refractive-index change in double-heterostructure GaAs/AlGaAs phase modulators,” J. Appl. Phys.62, 4548–4553 (1987).
    [CrossRef]
  34. B. Bennett, R. Soref, and J. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. of 26, 113–122 (1990).
    [CrossRef]
  35. J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys.51, 4365–4367 (1980).
    [CrossRef]
  36. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, 2007).
  37. K. Loi, L. Shen, H. Wieder, and W. Chang, “Electroabsorption waveguide modulators at 1.3 μm fabricated on GaAs substrates,” IEEE Photon. Technol. Lett.9, 1229–1231 (1997).
    [CrossRef]
  38. L. Shen, H. Wieder, and W. Chang, “Electroabsorption modulation at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett.8, 352–354 (1996).
    [CrossRef]
  39. S. M. Lord, B. Pezeshki, and J. S. Harris, “Electroabsorption modulators operating at 1.3 μm on GaAs substrates,” Opt. Quantum Electron.25, S953–S964 (1993).
    [CrossRef]

2010

H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010)
[CrossRef]

S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express18, 16858–16867 (2010).
[CrossRef] [PubMed]

2009

S. Ravindran, K. Alameh, and Y.-T. Lee, “Design and analysis of electroabsorptive quantum well based double ring resonators for wavelength switching applications,” Opt. Quantum Electron.41, 635–644 (2009).
[CrossRef]

2007

2005

T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005).
[CrossRef]

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23, 1800–1807, (2005).
[CrossRef]

2004

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

2003

2002

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: experiment and simulation,” Jpn. J. Appl. Phys.41, 1186–1189 (2002).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and P. Dapkus, “Active semiconductor microdisk devices,” J. Lightwave Technol.20, 105–113 (2002).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14, 828–830 (2002).
[CrossRef]

1999

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech.47, 1151–1171 (1999).
[CrossRef]

1998

B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
[CrossRef]

1997

K. Loi, L. Shen, H. Wieder, and W. Chang, “Electroabsorption waveguide modulators at 1.3 μm fabricated on GaAs substrates,” IEEE Photon. Technol. Lett.9, 1229–1231 (1997).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

1996

L. Shen, H. Wieder, and W. Chang, “Electroabsorption modulation at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett.8, 352–354 (1996).
[CrossRef]

1995

C. Glingener, D. Schulz, and E. Voges, “Modeling of optical waveguide modulators on III–V semiconductors,” IEEE J. Quantum Electron.31, 101–112 (1995).
[CrossRef]

1994

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron.30, 1801–1816 (1994).
[CrossRef]

1993

S. M. Lord, B. Pezeshki, and J. S. Harris, “Electroabsorption modulators operating at 1.3 μm on GaAs substrates,” Opt. Quantum Electron.25, S953–S964 (1993).
[CrossRef]

1992

K. Shimomura and S. Arai, “Semiconductor waveguide optical switches and modulators,” Fiber Int. Opt.13, 65–100 (1992).
[CrossRef]

1990

G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, “Low current plasma effect optical switch on InP,” Electron. Lett.26, 115–117 (1990).
[CrossRef]

B. Bennett, R. Soref, and J. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. of 26, 113–122 (1990).
[CrossRef]

J. Faist and F.-K. Reinhart, “Phase modulation in GaAs/AlGaAs double heterostructures. I. theory,” J. Appl. Phys.67, 6998–7005 (1990).
[CrossRef]

1989

F. Ito and T. Tanifuji, “Carrier-injection-type optical switch in GaAs with a 1.06–1.55μm wavelength range,” Appl. Phys. Lett.54, 134–136 (1989).
[CrossRef]

1988

T. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6, 743–757 (1988).
[CrossRef]

1987

B. Bennett and R. Soref, “Electrorefraction and electroabsorption in InP, GaAs, GaSb, InAs, and InSb,” IEEE J. Quantum Electron.23, 2159–2166 (1987).
[CrossRef]

J. G. Mendoza-Alvarez, R. H. Yan, and L. A. Coldren, “Contribution of the band-filling effect to the effective refractive-index change in double-heterostructure GaAs/AlGaAs phase modulators,” J. Appl. Phys.62, 4548–4553 (1987).
[CrossRef]

1984

O. Mikami and H. Nakagome, “Waveguided optical switch in InGaAs/InP using free-carrier plasma dispersion,” Electron. Lett.20, 228–229 (1984).
[CrossRef]

1982

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microw. Theory Tech.30, 1121–1137 (1982).
[CrossRef]

1980

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys.51, 4365–4367 (1980).
[CrossRef]

Abdalla, S.

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Alameh, K.

S. Ravindran, K. Alameh, and Y.-T. Lee, “Design and analysis of electroabsorptive quantum well based double ring resonators for wavelength switching applications,” Opt. Quantum Electron.41, 635–644 (2009).
[CrossRef]

Alferness, R. C.

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microw. Theory Tech.30, 1121–1137 (1982).
[CrossRef]

Arai, S.

K. Shimomura and S. Arai, “Semiconductor waveguide optical switches and modulators,” Fiber Int. Opt.13, 65–100 (1992).
[CrossRef]

Baliga, J.

J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science, 2008).
[CrossRef]

Barrios, P.

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Basu, P.K.

P.K. Basu, Theory of Optical Processes in Semiconductors-Bulk and Microstructures, (Oxford Science Publications, 1997).

Bennett, B.

B. Bennett, R. Soref, and J. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. of 26, 113–122 (1990).
[CrossRef]

B. Bennett and R. Soref, “Electrorefraction and electroabsorption in InP, GaAs, GaSb, InAs, and InSb,” IEEE J. Quantum Electron.23, 2159–2166 (1987).
[CrossRef]

Bogris, A.

H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010)
[CrossRef]

Cao, W.

T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
[CrossRef]

Celo, D.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Chang, W.

K. Loi, L. Shen, H. Wieder, and W. Chang, “Electroabsorption waveguide modulators at 1.3 μm fabricated on GaAs substrates,” IEEE Photon. Technol. Lett.9, 1229–1231 (1997).
[CrossRef]

L. Shen, H. Wieder, and W. Chang, “Electroabsorption modulation at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett.8, 352–354 (1996).
[CrossRef]

Chen, L.

Choi, S.

T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005).
[CrossRef]

Choi, S. J.

T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005).
[CrossRef]

Choi, S.-J.

K. Djordjev, S.-J. Choi, S.-J. Choi, and P. Dapkus, “Active semiconductor microdisk devices,” J. Lightwave Technol.20, 105–113 (2002).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and P. Dapkus, “Active semiconductor microdisk devices,” J. Lightwave Technol.20, 105–113 (2002).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14, 828–830 (2002).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14, 828–830 (2002).
[CrossRef]

Chu, S.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

Coldren, L. A.

J. G. Mendoza-Alvarez, R. H. Yan, and L. A. Coldren, “Contribution of the band-filling effect to the effective refractive-index change in double-heterostructure GaAs/AlGaAs phase modulators,” J. Appl. Phys.62, 4548–4553 (1987).
[CrossRef]

Dagli, N.

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech.47, 1151–1171 (1999).
[CrossRef]

Dapkus, P.

T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and P. Dapkus, “Active semiconductor microdisk devices,” J. Lightwave Technol.20, 105–113 (2002).
[CrossRef]

Dapkus, R.

K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14, 828–830 (2002).
[CrossRef]

Del Alamo, J.

B. Bennett, R. Soref, and J. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. of 26, 113–122 (1990).
[CrossRef]

Delage, A.

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Djordjev, K.

T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14, 828–830 (2002).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and P. Dapkus, “Active semiconductor microdisk devices,” J. Lightwave Technol.20, 105–113 (2002).
[CrossRef]

Ebeling, K.J.

K.J. Ebeling, Integrated Optoelectronics (Springer-Verlang, 1992).

El-Mougy, S.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Emelett, S. J.

Faist, J.

J. Faist and F.-K. Reinhart, “Phase modulation in GaAs/AlGaAs double heterostructures. I. theory,” J. Appl. Phys.67, 6998–7005 (1990).
[CrossRef]

Foresi, J.

B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

Glingener, C.

C. Glingener, D. Schulz, and E. Voges, “Modeling of optical waveguide modulators on III–V semiconductors,” IEEE J. Quantum Electron.31, 101–112 (1995).
[CrossRef]

Goldhar, J.

T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
[CrossRef]

Golub, I.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Hamacher, M.

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: experiment and simulation,” Jpn. J. Appl. Phys.41, 1186–1189 (2002).
[CrossRef]

Harris, J. S.

S. M. Lord, B. Pezeshki, and J. S. Harris, “Electroabsorption modulators operating at 1.3 μm on GaAs substrates,” Opt. Quantum Electron.25, S953–S964 (1993).
[CrossRef]

Haus, H.

B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

He, J.-J.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Heidrich, H.

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: experiment and simulation,” Jpn. J. Appl. Phys.41, 1186–1189 (2002).
[CrossRef]

Ho, P.-T.

T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
[CrossRef]

Ibrahim, T.A.

T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
[CrossRef]

Ippen, E.

B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
[CrossRef]

Ito, F.

F. Ito and T. Tanifuji, “Carrier-injection-type optical switch in GaAs with a 1.06–1.55μm wavelength range,” Appl. Phys. Lett.54, 134–136 (1989).
[CrossRef]

Janz, S.

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Kim, Y.

T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
[CrossRef]

Kimerling, L.

B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
[CrossRef]

Laine, J.-P.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

Lee, C.H.

T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
[CrossRef]

Lee, Y.-T.

S. Ravindran, K. Alameh, and Y.-T. Lee, “Design and analysis of electroabsorptive quantum well based double ring resonators for wavelength switching applications,” Opt. Quantum Electron.41, 635–644 (2009).
[CrossRef]

Li, Chao

Li, G.

Li, J.

T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
[CrossRef]

Lipson, M.

Little, B.

B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

Loi, K.

K. Loi, L. Shen, H. Wieder, and W. Chang, “Electroabsorption waveguide modulators at 1.3 μm fabricated on GaAs substrates,” IEEE Photon. Technol. Lett.9, 1229–1231 (1997).
[CrossRef]

Lord, S. M.

S. M. Lord, B. Pezeshki, and J. S. Harris, “Electroabsorption modulators operating at 1.3 μm on GaAs substrates,” Opt. Quantum Electron.25, S953–S964 (1993).
[CrossRef]

Manipatruni, S.

McKinnon, R.

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Mendoza-Alvarez, J. G.

J. G. Mendoza-Alvarez, R. H. Yan, and L. A. Coldren, “Contribution of the band-filling effect to the effective refractive-index change in double-heterostructure GaAs/AlGaAs phase modulators,” J. Appl. Phys.62, 4548–4553 (1987).
[CrossRef]

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys.51, 4365–4367 (1980).
[CrossRef]

Mikami, O.

O. Mikami and H. Nakagome, “Waveguided optical switch in InGaAs/InP using free-carrier plasma dispersion,” Electron. Lett.20, 228–229 (1984).
[CrossRef]

Muller, G.

G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, “Low current plasma effect optical switch on InP,” Electron. Lett.26, 115–117 (1990).
[CrossRef]

Nakagome, H.

O. Mikami and H. Nakagome, “Waveguided optical switch in InGaAs/InP using free-carrier plasma dispersion,” Electron. Lett.20, 228–229 (1984).
[CrossRef]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, 2007).

Ng, S.

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Nunes, F. D.

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys.51, 4365–4367 (1980).
[CrossRef]

Papadimitriou, G. I.

Papazoglou, C.

Patel, N. B.

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys.51, 4365–4367 (1980).
[CrossRef]

Pezeshki, B.

S. M. Lord, B. Pezeshki, and J. S. Harris, “Electroabsorption modulators operating at 1.3 μm on GaAs substrates,” Opt. Quantum Electron.25, S953–S964 (1993).
[CrossRef]

Piprek, J.

J. Piprek, Semiconductor Optoelectronic Devices-Introduction to Physics and Simulation (Academic Press, 2003).

Pomportsis, A. S.

Poole, P.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Poon, Andrew W.

Rabus, D. G.

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: experiment and simulation,” Jpn. J. Appl. Phys.41, 1186–1189 (2002).
[CrossRef]

Raptis, A.

H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010)
[CrossRef]

Raptis, N.

H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010)
[CrossRef]

Ravindran, S.

S. Ravindran, K. Alameh, and Y.-T. Lee, “Design and analysis of electroabsorptive quantum well based double ring resonators for wavelength switching applications,” Opt. Quantum Electron.41, 635–644 (2009).
[CrossRef]

Raymond, S.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Reinhart, F.-K.

J. Faist and F.-K. Reinhart, “Phase modulation in GaAs/AlGaAs double heterostructures. I. theory,” J. Appl. Phys.67, 6998–7005 (1990).
[CrossRef]

Ripin, D.

B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
[CrossRef]

Sadagopan, T.

T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005).
[CrossRef]

Schulte-Roth, G.

G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, “Low current plasma effect optical switch on InP,” Electron. Lett.26, 115–117 (1990).
[CrossRef]

Schulz, D.

C. Glingener, D. Schulz, and E. Voges, “Modeling of optical waveguide modulators on III–V semiconductors,” IEEE J. Quantum Electron.31, 101–112 (1995).
[CrossRef]

Shen, L.

K. Loi, L. Shen, H. Wieder, and W. Chang, “Electroabsorption waveguide modulators at 1.3 μm fabricated on GaAs substrates,” IEEE Photon. Technol. Lett.9, 1229–1231 (1997).
[CrossRef]

L. Shen, H. Wieder, and W. Chang, “Electroabsorption modulation at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett.8, 352–354 (1996).
[CrossRef]

Shimomura, K.

K. Shimomura and S. Arai, “Semiconductor waveguide optical switches and modulators,” Fiber Int. Opt.13, 65–100 (1992).
[CrossRef]

Simos, H.

H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010)
[CrossRef]

Smy, T.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Soref, R.

S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23, 1800–1807, (2005).
[CrossRef]

B. Bennett, R. Soref, and J. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. of 26, 113–122 (1990).
[CrossRef]

B. Bennett and R. Soref, “Electrorefraction and electroabsorption in InP, GaAs, GaSb, InAs, and InSb,” IEEE J. Quantum Electron.23, 2159–2166 (1987).
[CrossRef]

Stoll, L.

G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, “Low current plasma effect optical switch on InP,” Electron. Lett.26, 115–117 (1990).
[CrossRef]

Syrett, B.

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

Syvridis, D.

H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010)
[CrossRef]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, 2007).

Tamir, T.

T. Tamir, Integrated Optics (Springer-Verlang, 1979).

Tanifuji, T.

F. Ito and T. Tanifuji, “Carrier-injection-type optical switch in GaAs with a 1.06–1.55μm wavelength range,” Appl. Phys. Lett.54, 134–136 (1989).
[CrossRef]

Tutorial, I.

Voges, E.

C. Glingener, D. Schulz, and E. Voges, “Modeling of optical waveguide modulators on III–V semiconductors,” IEEE J. Quantum Electron.31, 101–112 (1995).
[CrossRef]

Weber, J.-P.

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron.30, 1801–1816 (1994).
[CrossRef]

Wieder, H.

K. Loi, L. Shen, H. Wieder, and W. Chang, “Electroabsorption waveguide modulators at 1.3 μm fabricated on GaAs substrates,” IEEE Photon. Technol. Lett.9, 1229–1231 (1997).
[CrossRef]

L. Shen, H. Wieder, and W. Chang, “Electroabsorption modulation at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett.8, 352–354 (1996).
[CrossRef]

Wolff, U.

G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, “Low current plasma effect optical switch on InP,” Electron. Lett.26, 115–117 (1990).
[CrossRef]

Wood, T.

T. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6, 743–757 (1988).
[CrossRef]

Yan, R. H.

J. G. Mendoza-Alvarez, R. H. Yan, and L. A. Coldren, “Contribution of the band-filling effect to the effective refractive-index change in double-heterostructure GaAs/AlGaAs phase modulators,” J. Appl. Phys.62, 4548–4553 (1987).
[CrossRef]

Yu, P.

Zhou, Linjie

Appl. Phys. Lett.

F. Ito and T. Tanifuji, “Carrier-injection-type optical switch in GaAs with a 1.06–1.55μm wavelength range,” Appl. Phys. Lett.54, 134–136 (1989).
[CrossRef]

Electron. Lett.

O. Mikami and H. Nakagome, “Waveguided optical switch in InGaAs/InP using free-carrier plasma dispersion,” Electron. Lett.20, 228–229 (1984).
[CrossRef]

G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, “Low current plasma effect optical switch on InP,” Electron. Lett.26, 115–117 (1990).
[CrossRef]

S. Ng, S. Abdalla, P. Barrios, A. Delage, S. Janz, R. McKinnon, and B. Syrett, “Bend loss attenuator by carrier injection in InGaAsP/InP,” Electron. Lett.41, 1348–1350 (2005).
[CrossRef]

Fiber Int. Opt.

K. Shimomura and S. Arai, “Semiconductor waveguide optical switches and modulators,” Fiber Int. Opt.13, 65–100 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Shen, H. Wieder, and W. Chang, “Electroabsorption modulation at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett.8, 352–354 (1996).
[CrossRef]

IEEE J. Quantum Electron.

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron.30, 1801–1816 (1994).
[CrossRef]

C. Glingener, D. Schulz, and E. Voges, “Modeling of optical waveguide modulators on III–V semiconductors,” IEEE J. Quantum Electron.31, 101–112 (1995).
[CrossRef]

B. Bennett and R. Soref, “Electrorefraction and electroabsorption in InP, GaAs, GaSb, InAs, and InSb,” IEEE J. Quantum Electron.23, 2159–2166 (1987).
[CrossRef]

B. Bennett, R. Soref, and J. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. of 26, 113–122 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Loi, L. Shen, H. Wieder, and W. Chang, “Electroabsorption waveguide modulators at 1.3 μm fabricated on GaAs substrates,” IEEE Photon. Technol. Lett.9, 1229–1231 (1997).
[CrossRef]

H. Simos, A. Bogris, A. Raptis, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22, 206–208, (2010)
[CrossRef]

B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, and D. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett.10, 816–818 (1998).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14, 828–830 (2002).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. Smy, and B. Syrett, “Carrier injection-based digital optical switch with reconfigurable output waveguide arms,” IEEE Photon. Technol. Lett.16, 1038–1040 (2004).
[CrossRef]

T.A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C.H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15, 36–38, (2003)
[CrossRef]

T. Sadagopan, S. Choi, S. J. Choi, K. Djordjev, and P. Dapkus, “Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17, 414–416 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech.47, 1151–1171 (1999).
[CrossRef]

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microw. Theory Tech.30, 1121–1137 (1982).
[CrossRef]

J. Appl. Phys.

J. Faist and F.-K. Reinhart, “Phase modulation in GaAs/AlGaAs double heterostructures. I. theory,” J. Appl. Phys.67, 6998–7005 (1990).
[CrossRef]

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys.51, 4365–4367 (1980).
[CrossRef]

J. G. Mendoza-Alvarez, R. H. Yan, and L. A. Coldren, “Contribution of the band-filling effect to the effective refractive-index change in double-heterostructure GaAs/AlGaAs phase modulators,” J. Appl. Phys.62, 4548–4553 (1987).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: experiment and simulation,” Jpn. J. Appl. Phys.41, 1186–1189 (2002).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

S. Ravindran, K. Alameh, and Y.-T. Lee, “Design and analysis of electroabsorptive quantum well based double ring resonators for wavelength switching applications,” Opt. Quantum Electron.41, 635–644 (2009).
[CrossRef]

S. M. Lord, B. Pezeshki, and J. S. Harris, “Electroabsorption modulators operating at 1.3 μm on GaAs substrates,” Opt. Quantum Electron.25, S953–S964 (1993).
[CrossRef]

Other

P.K. Basu, Theory of Optical Processes in Semiconductors-Bulk and Microstructures, (Oxford Science Publications, 1997).

T. Tamir, Integrated Optics (Springer-Verlang, 1979).

J. Piprek, Semiconductor Optoelectronic Devices-Introduction to Physics and Simulation (Academic Press, 2003).

J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science, 2008).
[CrossRef]

K.J. Ebeling, Integrated Optoelectronics (Springer-Verlang, 1992).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Perspective view of the proposed switch. The intrinsic region of the rings and of the straight waveguides lies in the same plane. (inset) BPM simulations showing the single mode operation. The red contour denotes the maximum modal confinement.

Fig. 2
Fig. 2

Injected carrier density inside the p-i-n micro-ring core with applied bias for different i-GaAs core thicknesses ‘d’ (τ=300ps).

Fig. 3
Fig. 3

(a) Refractive index change (ΔnBGS+BF) of p-Al0.3Ga0.7As/i-GaAs/n-Al0.3Ga0.7As p-i-n ring core due to combined BGS and BF effects for various applied bias, which is estimated as a function of operating wavelength. Arrow on the X-axis indicates resonant wavelength, and, (b) refractive index change (ΔnFCA) of the identical device due to FCA effect for various applied bias, which is estimated as a function of operating wavelength. Like before, arrow on the X-axis indicates resonant wavelength.

Fig. 4
Fig. 4

Total refractive index change as a function of operating wavelength due to the combination of the BGS, BF and FCA effects for various applied bias. It is seen that for operating wavelengths far from bandedge wavelength, significant index change occurs whose magnitude is more than adequate to realise switching in ring resonator. The black dotted lines show the wavelengths we aim to switch.

Fig. 5
Fig. 5

(a): Total refractive index change (ΔnTotal) due to the combination of BGS, BF and FCA effects, with applied bias for p-Al0.3Ga0.7As/i-GaAs/n-Al0.3Ga0.7As p-i-n diode of 1 μm and 0.5 μm intrinsic-GaAs region thicknesses (τ = 300 ps). ΔnTotal is estimated for 1305.28 and 1560.16 nm input wavelengths, (b) Total refractive index change (ΔnTotal) with electrically injected normalized carrier density into 1 μm and 0.5 μm intrinsic-GaAs layer (τ= 300 ps), which is individually estimated with 1305.28 and 1560.16 nm input wavelengths. As seen from Fig. 2, for fixed bias, injected carrier density is smaller in thicker core, and smaller index change is thus expected for 1 μm core thickness.

Fig. 6
Fig. 6

(a)Normalised power spectra for λR = 1305.28 nm, sampled at T(RED), D(BLACK) ports and, T(BLUE), D(MAGENTA) ports for 0 V and 2 V applied biases respectively, (b)Normalized power spectra for λR = 1560.16 nm, sampled at T(RED), D(BLACK) ports and, T(BLUE), D(MAGENTA) ports for 0 V and 2 V applied biases respectively.

Fig. 7
Fig. 7

Normalised output power level at the T (black) and D (red) ports versus the magnitude of RI change for two different resonant wavelengths (1305.28 nm, 1560.16 nm). Note that the RI change is negative.

Fig. 8
Fig. 8

Temporal evolution of n(x,t) at the initial switching phase (turn-on) for p-Al0.3Ga0.7As/i-GaAs/n-Al0.3Ga0.7As p-i-n diode of 1 μm intrinsic-GaAs region thickness. Locus of modulation length (XM) (see text for definition) is indicated by dashed line.

Fig. 9
Fig. 9

Time evolution of intrinsic-region (drift space) resistance for p-Al0.3Ga0.7As/i-GaAs/n-Al0.3Ga0.7As p-i-n diode of 1 μm i-GaAs region thickness, with individual applied bias at the initial switching phase (τ=300 ps and, τ=30 ps). Lines are guide to the eye.

Fig. 10
Fig. 10

Time evolution of power (in un-modulated drift space) for p-Al0.3Ga0.7As/i-GaAs/n-Al0.3Ga0.7As p-i-n diode having 1 μm i-GaAs region thickness, with individual applied bias at the initial switching phase (τ=300 ps and, τ=30 ps).

Fig. 11
Fig. 11

Decay of steady state stored charge density with time during turn-off phase of p-Al0.3Ga0.7As/i-GaAs/n-Al0.3Ga0.7As p-i-n diode of 1 μm i-GaAs region thickness (τ=300 ps and, τ=30 ps).

Fig. 12
Fig. 12

Turn-on and turn-off delays of p-Al0.3Ga0.7As/i-GaAs/n-Al0.3Ga0.7As p-i-n diode of 1 μm i-GaAs layer thickness. (b) Power-delay product of identical diode during turn-on phase (τ = 300 ps).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P T = | τ a exp ( 2 j ω L c n α L ) τ b ( 1 + τ a 2 ) exp ( j ω L c n L 2 α ) + τ a 1 2 τ a τ b exp ( j ω L c n L 2 α ) + τ a 2 exp ( 2 j ω L c n α L ) | 2
P D = | j κ a 2 κ b exp ( j ω L c n L 2 α ) 1 2 τ a τ b exp ( j ω L c n L 2 α ) + τ a 2 exp ( 2 j ω L c n α L ) | 2
J n = q ( μ n n F + D n n ) J p = q ( μ p p F + D p p )
q n t = J n q ( R G ) q p t = J p q ( R G )
F = q ε ( p n + p D n A )
Δ E g ( χ ) = ( κ ε s ) ( χ χ c r 1 ) 1 / 3
Δ α B F + B G S = C h h E ( f v ( E v h ) f c ( E c h ) ) × E E g + C l h E ( f v ( E v l ) f c ( E c l ) ) × E E g [ C h h E E E g + C l h E E E g ]
Δ n B F + B G S = c h ¯ π PV ( 0 Δ α B F + B G S E 2 E 2 d E ¯ )
Δ n F C A = 6.9 × 10 22 n E 2 [ N m e + P ( m h h 1 / 2 + m l h 1 / 2 m h h 3 / 2 + m l h 3 / 2 ) ]
Δ n Total = Δ n B F + B G S + Δ n F C A
J T = n a ( 2 q d τ )
J ( t ) = { ( J T τ ) × t , 0 t τ J T , t > τ
n ( x , t ) = A ( t ) exp ( x 4 D n t ) + n i
A ( t ) = ( J T τ ) t 3 / 2 q D n
X M = 4 D n t log [ A ( t ) N M n i ]
R D ( t ) = X M d d x q μ n n ( x , t )
P ( t ) = J 2 ( t ) × R D ( t ) × π R 2
d Q d t = Q τ

Metrics