Abstract

THz metamaterials are employed to examine changes in the meta-resonances when two anisotropic organic materials, liquid crystal and carbon nanotubes, are placed on top of metamaterials. In both anisotropic double split-ring resonators and isotropic four-fold symmetric split-ring resonators, anisotropic interactions between the electric field and organic materials are enhanced in the vicinity of meta-resonances. In liquid crystal, meta-resonance frequency shift is observed with the magneto-optical coupling giving rise to the largest anisotropic shift. In carbon nanotube, meta-resonance absorptions, parallel and perpendicular to nanotube direction, experience different amount of broadening of Lorentzian oscillator of meta-resonance. Investigation reported here opens the application of metamaterials as a sensor for anisotropic materials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J.1, 99–118 (2009).
    [CrossRef]
  2. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
    [CrossRef]
  3. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
    [CrossRef]
  4. J. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16, 1786–795 (2008).
    [CrossRef] [PubMed]
  5. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91, 184102 (2007).
    [CrossRef]
  6. N. Vieweg, C. Jansen, M. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18, 6097–6107 (2010).
    [CrossRef] [PubMed]
  7. T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
    [CrossRef]
  8. R. Singh, E. Smirnova, A. Taylor, J. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express16, 6537–6543 (2008).
    [CrossRef] [PubMed]
  9. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
    [CrossRef]
  10. S. Jewell, E. Hendry, T. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
    [CrossRef]
  11. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009).
    [CrossRef]
  12. S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998).
    [CrossRef]
  13. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express12, 2625–2630 (2004).
    [CrossRef] [PubMed]
  14. M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
    [CrossRef] [PubMed]
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
    [CrossRef]
  16. J. Woo, E. Kim, E. Choi, B. Kang, H.-H. Lee, J. Kim, Y. Lee, T. Y. Hong, J. H. Kim, and J. Wu, “Cryogenic temperature measurement of THz meta-resonance in symmetric metamaterial superlattice,” Opt. Express19, 4384–4392 (2011).
    [CrossRef] [PubMed]

2011

2010

2009

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J.1, 99–118 (2009).
[CrossRef]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009).
[CrossRef]

2008

S. Jewell, E. Hendry, T. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
[CrossRef]

J. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16, 1786–795 (2008).
[CrossRef] [PubMed]

R. Singh, E. Smirnova, A. Taylor, J. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express16, 6537–6543 (2008).
[CrossRef] [PubMed]

2007

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91, 184102 (2007).
[CrossRef]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

2005

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

2004

2002

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

1998

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998).
[CrossRef]

Abbott, D.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J.1, 99–118 (2009).
[CrossRef]

Aliev, A.

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

An, K.

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

Andreev, G. O.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
[CrossRef]

Atkinson, K.

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

Averitt, R. D.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
[CrossRef]

Bae, D.

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

Basov, D. N.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

Baughman, R.

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91, 184102 (2007).
[CrossRef]

Brener, I.

Chen, C.-Y.

Cho, S. Y.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

Choi, E.

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91, 184102 (2007).
[CrossRef]

Driscoll, T.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

Fang, S.

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

Feng, H.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
[CrossRef]

Gu, C.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
[CrossRef]

Han, J.

Hasek, T.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009).
[CrossRef]

Hendry, E.

S. Jewell, E. Hendry, T. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
[CrossRef]

Hong, T. Y.

Hsieh, C.-F.

Isaac, T.

S. Jewell, E. Hendry, T. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Jansen, C.

Jeon, T.-I.

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

Jewell, S.

S. Jewell, E. Hendry, T. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Jokerst, N. M.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

Kang, B.

Kang, C.

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

Kim, E.

Kim, J.

Kim, J. H.

Kim, K.-J.

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

Koch, M.

N. Vieweg, C. Jansen, M. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18, 6097–6107 (2010).
[CrossRef] [PubMed]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009).
[CrossRef]

Kopschinski, O.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009).
[CrossRef]

Krumbholz, N.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
[CrossRef]

Lee, H.-H.

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
[CrossRef]

Lee, S.

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

Lee, Y.

J. Woo, E. Kim, E. Choi, B. Kang, H.-H. Lee, J. Kim, Y. Lee, T. Y. Hong, J. H. Kim, and J. Wu, “Cryogenic temperature measurement of THz meta-resonance in symmetric metamaterial superlattice,” Opt. Express19, 4384–4392 (2011).
[CrossRef] [PubMed]

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

Lin, Y.-F.

Mikulics, M.

O’Hara, J.

Oh, S.-J.

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

Padilla, W. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
[CrossRef]

Palit, S.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

Pan, C.-L.

Pan, R.-P.

Sambles, J. R.

S. Jewell, E. Hendry, T. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Scheller, M.

Shakfa, M.

Singh, R.

Smirnova, E.

Smith, D. R.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

Son, J.-H.

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

Sun, Y.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
[CrossRef]

Taylor, A.

Taylor, A. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
[CrossRef]

Vieweg, N.

N. Vieweg, C. Jansen, M. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18, 6097–6107 (2010).
[CrossRef] [PubMed]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009).
[CrossRef]

Wang, L.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
[CrossRef]

Wilk, R.

N. Vieweg, C. Jansen, M. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18, 6097–6107 (2010).
[CrossRef] [PubMed]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009).
[CrossRef]

Williams, C.

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

Withayachumnankul, W.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J.1, 99–118 (2009).
[CrossRef]

Woo, J.

Wu, J.

Wu, S. T.

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998).
[CrossRef]

Xia, X.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
[CrossRef]

Yang, H.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
[CrossRef]

Zakhidov, A.

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

Zhang, M.

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

Zhang, W.

Appl. Phys. Lett.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett.92, 221101 (2008).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91, 184102 (2007).
[CrossRef]

T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. An, D. Bae, and Y. Lee, “Terahertz conductivity of anisotropic single walled carbon nanotube films,” Appl. Phys. Lett.80, 3403 (2002).
[CrossRef]

IEEE Photon. J.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J.1, 99–118 (2009).
[CrossRef]

J. Appl. Phys.

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998).
[CrossRef]

J. Infrared Milli. Terahz. Waves

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves30, 1139–1147 (2009).
[CrossRef]

New J. Phys.

S. Jewell, E. Hendry, T. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Opt. Express

Phys. Rev. B

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75, 041102 (2007).
[CrossRef]

Science

M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309, 1215–1219 (2005).
[CrossRef] [PubMed]

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Microscope pictures of (a) double split-ring resonator metamaterial A and (b) isotropic metamaterial B.

Fig. 2
Fig. 2

Metamaterial A and THz transmission spectra.

Fig. 3
Fig. 3

Metamaterial B and THz transmission spectra.

Fig. 4
Fig. 4

Schematic drawing of LC on metamaterials. Director of LC is (a) parallel and (b) perpendicular to the gap-bearing arm of metamaterial A. (c) LC is on metamaterial B. (d) Picture of sample cells fabricated with LCs.

Fig. 5
Fig. 5

Schematic drawing of carbon nanotube on metamaterials. CNT is (a) parallel and (b) perpendicular to the gap-bearing arm of metamaterial A. (c) CNT is on metamaterial B. (d) Picture of sample cells fabricated with CNTs.

Fig. 6
Fig. 6

LC on metamaterial A, E‖.

Fig. 7
Fig. 7

LC on metamaterial A, E⊥.

Fig. 8
Fig. 8

Anisotropy (dark blue curve) is plotted, namely, Anisotropy = (II)/(I + 2I) for (a) E‖ and (b) E⊥ when nematic LC is present on top of metamaterial A.

Fig. 9
Fig. 9

LC on metamaterial B.

Fig. 10
Fig. 10

Anisotropy (dark blue curve) is plotted, namely, Anisotropy = (II)/(I + 2I) when nematic LC is present on top of metamaterial B.

Fig. 11
Fig. 11

Transmission spectra for carbon nanotube on double split-ring resonator metamaterials along with spectra of bare double split-ring resonator (red curve), corresponding to (a) E‖ and (b) E⊥. Blue arrow corresponds to the beam propagation direction. Solid black arrow corresponds to the polarization direction of incident THz wave. Carbon nanotube is parallel (blue curve) and perpendicular (green curve) to the polarization direction.

Fig. 12
Fig. 12

THz transmission spectra for CNT on isotropic structure along with bare isotropic structure spectra(red curve) is shown. Blue arrow corresponds to the beam propagation direction. Carbon nanotube is parallel (blue curve) and perpendicular (green curve) to the polarization direction.

Fig. 13
Fig. 13

Anisotropy = (II)/(I + I⊥) of CNT samples is shown with absorbance spectra of bare sample (dark blue curve). (a) Double split-ring resonator at E‖ configuration. (b) Double split-ring resonator at E⊥ configuration. (c) Isotropic structure.

Fig. 14
Fig. 14

Anisotropy = (II)/(I + I) of CNT samples shown in Fig. 13 is plotted all together with the reference spectra of CNT on top of bare Si substrate.

Tables (2)

Tables Icon

Table 1 Red-Shift in Resonance Frequency of Metamaterial in the Presence of Nematic LCs

Tables Icon

Table 2 Oscillator Strength Changes in Resonance Absorption of Metamaterial in the Presence of CNTs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Anisotropy = I I I + 2 I .
Anisotropy = I I I + I .
Δ ω = ω LC ω 0 ω 0 × 100
Δ α = α C N T α 0 α 0 × 100 ,

Metrics