Abstract

High quality opal photonic crystals (PhCs) were successfully fabricated by self-assembling of monodisperse Eu3+/SiO2 core/shell nanospheres. Angular resolved photoluminescence (PL) spectra of a PhC sample were measured with different pumping powers, and its PL emission strongly depended on spectroscopic position of the photonic stop band and the optical pumping power. Suppression of the PL occurred in the directions where the emission lines aligned with the center of the photonic stop band. Suppression and enhancement of the PL were observed at low- and high-pumping powers, respectively, in the directions where the emission lines were located at the edges of the photonic stop band. When pumping power exceeded 6 µJ/pulse, a super-linear dependence was found between the pumping power and PL intensity. The dramatic enhancement of PL was attributed to the amplification of spontaneous emission resulted from the creation of large population inversion and the slow group velocity of the emitted light inside the PhC. The opal PhC provided highly angular-selective quasi-monochromatic PL output, which can be useful for a variety of optical applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. López, “Materials aspects of photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)15(20), 1679–1704 (2003).
    [CrossRef]
  2. K. Sakoda, Optical properties of photonic crystals, 2nd ed. (Springer, 2004).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  5. K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express17(15), 13168–13177 (2009).
    [CrossRef] [PubMed]
  6. L. Frezza, M. Patrini, M. Liscidini, and D. Comoretto, “Directional enhancement of spontaneous emission in polymer flexible microcavities,” J. Phys. Chem. C115(40), 19939–19946 (2011).
    [CrossRef]
  7. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
    [CrossRef]
  8. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005).
    [CrossRef] [PubMed]
  9. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
    [CrossRef] [PubMed]
  10. J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
    [CrossRef]
  11. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002).
    [CrossRef] [PubMed]
  12. F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
    [CrossRef] [PubMed]
  13. S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett.76(13), 1656–1658 (2000).
    [CrossRef]
  14. R. C. Schroden, M. Al-Daous, and A. Stein, “Self-modification of spontaneous emission by inverse opal silica photonic crystals,” Chem. Mater.13(9), 2945–2950 (2001).
    [CrossRef]
  15. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
    [CrossRef] [PubMed]
  16. M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
    [CrossRef]
  17. H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, “Laser action in Tb(OH)3/SiO2 photonic crystals,” Opt. Express16(21), 16697–16703 (2008).
    [CrossRef] [PubMed]
  18. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  19. M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B72(8), 085129 (2005).
    [CrossRef]
  20. L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
    [CrossRef]
  21. J. Hung, J. Castillo, and A. M. Olaizola, “Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation,” J. Lumin.101(4), 263–268 (2003).
    [CrossRef]
  22. C. Graf, S. Dembski, A. Hofmann, and E. Rühl, “A general method for the controlled embedding of nanoparticles in silica colloids,” Langmuir22(13), 5604–5610 (2006).
    [CrossRef] [PubMed]
  23. H. S. Yoo, J. Y. Han, S. W. Kim, D. Y. Jeon, and B. S. Bae, “Self-assembled SiO2 photonic crystal infiltrated by Ormosil:Eu(DBM)3 phen phosphor and its enhanced photoluminescence,” Opt. Express17(5), 3732–3740 (2009).
    [CrossRef] [PubMed]
  24. H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005).
    [CrossRef]
  25. C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
    [CrossRef] [PubMed]
  26. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
    [CrossRef]
  27. G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3: Eu,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1557–1560 (2001).
  28. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
    [CrossRef]
  29. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).
  30. B. Tang, J. Ge, and L. Zhuo, “The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent,” Nanotechnology15(12), 1749–1751 (2004).
    [CrossRef]
  31. C. Y. Wu, N. D. Lai, and C. C. Hsu, “Rapidly self-assembling three-dimensional opal photonic crystals,” J. Korean Phys. Soc.52(5), 1585–1588 (2008).
    [CrossRef]
  32. Y. Liu, C. Jiang, Y. Lin, and W. Xu, “Slow-light enhancement of stimulated emission of atomic systems in photonic crystals,” J. Opt. Soc. Am. B27(3), 442–446 (2010).
    [CrossRef]
  33. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994).
    [CrossRef]
  34. S. Nojima, “Enhancement of optical gain in two-dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys. Lett.37(Part 2, No. 5B), L565–L567 (1998).
    [CrossRef]
  35. X. Xu, B. Cheng, and D. Zhang, “The enhancement of stimulated emission near a photonic band edge,” J. Phys. Condens. Matter15(44), 7455–7461 (2003).
    [CrossRef]

2012

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

2011

L. Frezza, M. Patrini, M. Liscidini, and D. Comoretto, “Directional enhancement of spontaneous emission in polymer flexible microcavities,” J. Phys. Chem. C115(40), 19939–19946 (2011).
[CrossRef]

2010

2009

H. S. Yoo, J. Y. Han, S. W. Kim, D. Y. Jeon, and B. S. Bae, “Self-assembled SiO2 photonic crystal infiltrated by Ormosil:Eu(DBM)3 phen phosphor and its enhanced photoluminescence,” Opt. Express17(5), 3732–3740 (2009).
[CrossRef] [PubMed]

K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express17(15), 13168–13177 (2009).
[CrossRef] [PubMed]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

2008

H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, “Laser action in Tb(OH)3/SiO2 photonic crystals,” Opt. Express16(21), 16697–16703 (2008).
[CrossRef] [PubMed]

C. Y. Wu, N. D. Lai, and C. C. Hsu, “Rapidly self-assembling three-dimensional opal photonic crystals,” J. Korean Phys. Soc.52(5), 1585–1588 (2008).
[CrossRef]

2007

C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
[CrossRef]

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
[CrossRef]

2006

C. Graf, S. Dembski, A. Hofmann, and E. Rühl, “A general method for the controlled embedding of nanoparticles in silica colloids,” Langmuir22(13), 5604–5610 (2006).
[CrossRef] [PubMed]

2005

H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005).
[CrossRef]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B72(8), 085129 (2005).
[CrossRef]

2004

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

B. Tang, J. Ge, and L. Zhuo, “The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent,” Nanotechnology15(12), 1749–1751 (2004).
[CrossRef]

2003

X. Xu, B. Cheng, and D. Zhang, “The enhancement of stimulated emission near a photonic band edge,” J. Phys. Condens. Matter15(44), 7455–7461 (2003).
[CrossRef]

J. Hung, J. Castillo, and A. M. Olaizola, “Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation,” J. Lumin.101(4), 263–268 (2003).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

C. López, “Materials aspects of photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)15(20), 1679–1704 (2003).
[CrossRef]

2002

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002).
[CrossRef] [PubMed]

2001

R. C. Schroden, M. Al-Daous, and A. Stein, “Self-modification of spontaneous emission by inverse opal silica photonic crystals,” Chem. Mater.13(9), 2945–2950 (2001).
[CrossRef]

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3: Eu,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1557–1560 (2001).

2000

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett.76(13), 1656–1658 (2000).
[CrossRef]

1998

S. Nojima, “Enhancement of optical gain in two-dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys. Lett.37(Part 2, No. 5B), L565–L567 (1998).
[CrossRef]

1994

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1973

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

1968

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Al-Daous, M.

R. C. Schroden, M. Al-Daous, and A. Stein, “Self-modification of spontaneous emission by inverse opal silica photonic crystals,” Chem. Mater.13(9), 2945–2950 (2001).
[CrossRef]

Aloshyna, M.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Anh, T. K.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Bae, B. S.

Barth, M.

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B72(8), 085129 (2005).
[CrossRef]

Berti, L.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994).
[CrossRef]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994).
[CrossRef]

Bozio, R.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Brolo, A. G.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Bullen, C.

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
[CrossRef]

Burger, M.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Cao, W.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002).
[CrossRef] [PubMed]

Castillo, J.

J. Hung, J. Castillo, and A. M. Olaizola, “Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation,” J. Lumin.101(4), 263–268 (2003).
[CrossRef]

Chen, Y. F.

H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, “Laser action in Tb(OH)3/SiO2 photonic crystals,” Opt. Express16(21), 16697–16703 (2008).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
[CrossRef]

Cheng, B.

X. Xu, B. Cheng, and D. Zhang, “The enhancement of stimulated emission near a photonic band edge,” J. Phys. Condens. Matter15(44), 7455–7461 (2003).
[CrossRef]

Cheng, C. L.

Cichos, F.

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B72(8), 085129 (2005).
[CrossRef]

Comoretto, D.

L. Frezza, M. Patrini, M. Liscidini, and D. Comoretto, “Directional enhancement of spontaneous emission in polymer flexible microcavities,” J. Phys. Chem. C115(40), 19939–19946 (2011).
[CrossRef]

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Dainese, T.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

De La Rue, R. M.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett.76(13), 1656–1658 (2000).
[CrossRef]

Dembski, S.

C. Graf, S. Dembski, A. Hofmann, and E. Rühl, “A general method for the controlled embedding of nanoparticles in silica colloids,” Langmuir22(13), 5604–5610 (2006).
[CrossRef] [PubMed]

Di Stasio, F.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Dobson, P. J.

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3: Eu,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1557–1560 (2001).

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994).
[CrossRef]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Floris Van Driel, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Fokin, A. V.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett.76(13), 1656–1658 (2000).
[CrossRef]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

Frezza, L.

L. Frezza, M. Patrini, M. Liscidini, and D. Comoretto, “Directional enhancement of spontaneous emission in polymer flexible microcavities,” J. Phys. Chem. C115(40), 19939–19946 (2011).
[CrossRef]

Fu, H. K.

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Gardin, S.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Ge, J.

B. Tang, J. Ge, and L. Zhuo, “The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent,” Nanotechnology15(12), 1749–1751 (2004).
[CrossRef]

Graf, C.

C. Graf, S. Dembski, A. Hofmann, and E. Rühl, “A general method for the controlled embedding of nanoparticles in silica colloids,” Langmuir22(13), 5604–5610 (2006).
[CrossRef] [PubMed]

Gruber, A.

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B72(8), 085129 (2005).
[CrossRef]

Gu, M.

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
[CrossRef]

Han, J. Y.

Hofmann, A.

C. Graf, S. Dembski, A. Hofmann, and E. Rühl, “A general method for the controlled embedding of nanoparticles in silica colloids,” Langmuir22(13), 5604–5610 (2006).
[CrossRef] [PubMed]

Holland, E.

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3: Eu,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1557–1560 (2001).

Hsu, C. C.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

C. Y. Wu, N. D. Lai, and C. C. Hsu, “Rapidly self-assembling three-dimensional opal photonic crystals,” J. Korean Phys. Soc.52(5), 1585–1588 (2008).
[CrossRef]

Hung, J.

J. Hung, J. Castillo, and A. M. Olaizola, “Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation,” J. Lumin.101(4), 263–268 (2003).
[CrossRef]

Hung, Y.

H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, “Laser action in Tb(OH)3/SiO2 photonic crystals,” Opt. Express16(21), 16697–16703 (2008).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
[CrossRef]

Hutchison, J. L.

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3: Eu,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1557–1560 (2001).

Imada, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Irman, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Ishizaki, K.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Jeon, D. Y.

Jia, B.

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
[CrossRef]

Jiang, C.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kan, H. C.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

Kim, S. W.

Kong, D.

C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
[CrossRef] [PubMed]

Kuroda, K.

Kuroda, T.

Lai, N. D.

C. Y. Wu, N. D. Lai, and C. C. Hsu, “Rapidly self-assembling three-dimensional opal photonic crystals,” J. Korean Phys. Soc.52(5), 1585–1588 (2008).
[CrossRef]

Li, J.

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
[CrossRef]

Lin, C.

C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
[CrossRef] [PubMed]

Lin, C. K.

H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005).
[CrossRef]

Lin, H. Y.

H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, “Laser action in Tb(OH)3/SiO2 photonic crystals,” Opt. Express16(21), 16697–16703 (2008).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
[CrossRef]

Lin, J.

C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
[CrossRef] [PubMed]

H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005).
[CrossRef]

Lin, Y.

Lin, Y. S.

H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, “Laser action in Tb(OH)3/SiO2 photonic crystals,” Opt. Express16(21), 16697–16703 (2008).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
[CrossRef]

Liscidini, M.

L. Frezza, M. Patrini, M. Liscidini, and D. Comoretto, “Directional enhancement of spontaneous emission in polymer flexible microcavities,” J. Phys. Chem. C115(40), 19939–19946 (2011).
[CrossRef]

Liu, X.

C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
[CrossRef] [PubMed]

Liu, X. M.

H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005).
[CrossRef]

Liu, Y.

Lodahl, P.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

López, C.

C. López, “Materials aspects of photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)15(20), 1679–1704 (2003).
[CrossRef]

Marabelli, F.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Minh, L. Q.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

Mou, C. Y.

H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, “Laser action in Tb(OH)3/SiO2 photonic crystals,” Opt. Express16(21), 16697–16703 (2008).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
[CrossRef]

Muñoz, A.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002).
[CrossRef] [PubMed]

Nakamori, T.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Nikolaev, I. S.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Noda, S.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Nojima, S.

S. Nojima, “Enhancement of optical gain in two-dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys. Lett.37(Part 2, No. 5B), L565–L567 (1998).
[CrossRef]

Okano, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Olaizola, A. M.

J. Hung, J. Castillo, and A. M. Olaizola, “Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation,” J. Lumin.101(4), 263–268 (2003).
[CrossRef]

Ota, Y.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Overgaag, K.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Palffy-Muhoray, P.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002).
[CrossRef] [PubMed]

Patrini, M.

L. Frezza, M. Patrini, M. Liscidini, and D. Comoretto, “Directional enhancement of spontaneous emission in polymer flexible microcavities,” J. Phys. Chem. C115(40), 19939–19946 (2011).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Romanov, S. G.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett.76(13), 1656–1658 (2000).
[CrossRef]

Rühl, E.

C. Graf, S. Dembski, A. Hofmann, and E. Rühl, “A general method for the controlled embedding of nanoparticles in silica colloids,” Langmuir22(13), 5604–5610 (2006).
[CrossRef] [PubMed]

Sakoda, K.

Sawada, T.

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994).
[CrossRef]

Schroden, R. C.

R. C. Schroden, M. Al-Daous, and A. Stein, “Self-modification of spontaneous emission by inverse opal silica photonic crystals,” Chem. Mater.13(9), 2945–2950 (2001).
[CrossRef]

Serbin, J.

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
[CrossRef]

Signorini, R.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Sivakumar, S.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Stein, A.

R. C. Schroden, M. Al-Daous, and A. Stein, “Self-modification of spontaneous emission by inverse opal silica photonic crystals,” Chem. Mater.13(9), 2945–2950 (2001).
[CrossRef]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Suzuki, K.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Taheri, B.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002).
[CrossRef] [PubMed]

Takahashi, S.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Tang, B.

B. Tang, J. Ge, and L. Zhuo, “The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent,” Nanotechnology15(12), 1749–1751 (2004).
[CrossRef]

Tseng, Y. H.

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
[CrossRef]

Tuyen, L. D.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

van Veggel, F. C. J. M.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Vanmaekelbergh, D.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Venkataramanan, M.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Vos, W. L.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Wakefield, G.

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3: Eu,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1557–1560 (2001).

Wang, H.

C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
[CrossRef] [PubMed]

H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005).
[CrossRef]

Watanabe, K.

Wu, C. Y.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

C. Y. Wu, N. D. Lai, and C. C. Hsu, “Rapidly self-assembling three-dimensional opal photonic crystals,” J. Korean Phys. Soc.52(5), 1585–1588 (2008).
[CrossRef]

Xu, W.

Xu, X.

X. Xu, B. Cheng, and D. Zhang, “The enhancement of stimulated emission near a photonic band edge,” J. Phys. Condens. Matter15(44), 7455–7461 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Yoo, H. S.

Yu, M.

C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
[CrossRef] [PubMed]

H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005).
[CrossRef]

Zhang, D.

X. Xu, B. Cheng, and D. Zhang, “The enhancement of stimulated emission near a photonic band edge,” J. Phys. Condens. Matter15(44), 7455–7461 (2003).
[CrossRef]

Zhou, G.

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
[CrossRef]

Zhuo, L.

B. Tang, J. Ge, and L. Zhuo, “The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent,” Nanotechnology15(12), 1749–1751 (2004).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

C. López, “Materials aspects of photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)15(20), 1679–1704 (2003).
[CrossRef]

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3276–3280 (2007).
[CrossRef]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse Lanthanide-Hydroxide-at-Silica core/shell colloidal spheres,” Adv. Mater. (Deerfield Beach Fla.)19(4), 577–580 (2007).
[CrossRef]

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3: Eu,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1557–1560 (2001).

Appl. Phys. Lett.

H. Wang, C. K. Lin, X. M. Liu, J. Lin, and M. Yu, “Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays,” Appl. Phys. Lett.87(18), 181907 (2005).
[CrossRef]

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett.76(13), 1656–1658 (2000).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Chem. Mater.

R. C. Schroden, M. Al-Daous, and A. Stein, “Self-modification of spontaneous emission by inverse opal silica photonic crystals,” Chem. Mater.13(9), 2945–2950 (2001).
[CrossRef]

Inorg. Chem.

C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, and J. Lin, “Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization,” Inorg. Chem.46(7), 2674–2681 (2007).
[CrossRef] [PubMed]

J. Appl. Phys.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994).
[CrossRef]

J. Colloid Interface Sci.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

J. Exp. Nanosci.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

J. Korean Phys. Soc.

C. Y. Wu, N. D. Lai, and C. C. Hsu, “Rapidly self-assembling three-dimensional opal photonic crystals,” J. Korean Phys. Soc.52(5), 1585–1588 (2008).
[CrossRef]

J. Lumin.

J. Hung, J. Castillo, and A. M. Olaizola, “Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation,” J. Lumin.101(4), 263–268 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. C

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

L. Frezza, M. Patrini, M. Liscidini, and D. Comoretto, “Directional enhancement of spontaneous emission in polymer flexible microcavities,” J. Phys. Chem. C115(40), 19939–19946 (2011).
[CrossRef]

J. Phys. Condens. Matter

X. Xu, B. Cheng, and D. Zhang, “The enhancement of stimulated emission near a photonic band edge,” J. Phys. Condens. Matter15(44), 7455–7461 (2003).
[CrossRef]

Jpn. J. Appl. Phys. Lett.

S. Nojima, “Enhancement of optical gain in two-dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys. Lett.37(Part 2, No. 5B), L565–L567 (1998).
[CrossRef]

Langmuir

C. Graf, S. Dembski, A. Hofmann, and E. Rühl, “A general method for the controlled embedding of nanoparticles in silica colloids,” Langmuir22(13), 5604–5610 (2006).
[CrossRef] [PubMed]

Nanotechnology

B. Tang, J. Ge, and L. Zhuo, “The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent,” Nanotechnology15(12), 1749–1751 (2004).
[CrossRef]

Nat. Mater.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002).
[CrossRef] [PubMed]

Nat. Phys. Sci (Lond.)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

Nature

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Opt. Express

Phys. Chem. Chem. Phys.

F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, “Amplified spontaneous emission from opal photonic crystals engineered with structural defects,” Phys. Chem. Chem. Phys.11(48), 11515–11519 (2009).
[CrossRef] [PubMed]

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. B

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B72(8), 085129 (2005).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Science

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Other

K. Sakoda, Optical properties of photonic crystals, 2nd ed. (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of angular-resolved PL measurement setup. Excitation beam was focused onto the sample by lens L1 (f = 10 cm). The PL was collected by lens L2 (f = 3 cm) and then focused to an optical fiber connected to the spectrometer. θ is the angle between the normal line of the sample and detection line.

Fig. 2
Fig. 2

(a) Transmission electron microscopy (TEM) image of Eu3+/SiO2 core/shell nanospheres. (b) Top view scanning electron microscopy (SEM) image of an Eu3+/SiO2 core/shell opal film after thermal annealing at 900 οC for 2 h.

Fig. 3
Fig. 3

Normal incident reflection spectra of opal PhCs composed of different diameters of Eu3+/SiO2 core/shell nanospheres.

Fig. 4
Fig. 4

(a) PL spectra of Eu3+/SiO2 core/shell nanosphere powders after the thermal annealing treatment. Inset: photograph of the PL emission of the sample pumped by the excitation laser at 395 nm. (b) Angular dependent specular reflection spectra of an opal PhC composed of Eu3+/SiO2 core/shell nanospheres with the diameter of 290 nm.

Fig. 5
Fig. 5

PL spectra of an opal PhC composed of Eu3+/SiO2 core/shell nanospheres with a diameter of 290 nm measured at different detected angles for excitation powers of 1 µJ/pulse (a) and 12 µJ/pulse (b). Insets zoom in PL spectra of emission peak at 592 nm. PL angular-distributions obtained at two pumping powers for the emission peaks at 612 nm (c) and 592 nm (d).

Fig. 6
Fig. 6

Double logarithmic plot of PL intensity at 612 nm of the opal PhC versus the pumping power measured at different θ angles. The result of a powder sample is included for comparison.

Metrics