Abstract

The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express15(8), 4523–4529 (2007).
    [CrossRef] [PubMed]
  2. R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging. Sci. J58(4), 202–212 (2010).
    [CrossRef]
  3. H. Ren, Y. H. Lin, and S. T. Wu, “Flat polymeric microlens array,” Opt. Commun.261(2), 296–299 (2006).
    [CrossRef]
  4. H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
    [CrossRef]
  5. Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett.8(5), 512–514 (2010).
    [CrossRef]
  6. W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A, Pure Appl. Opt.6(4), 330–337 (2004).
    [CrossRef]
  7. C. Peng, X. G. Liang, Z. L. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B25(2), 410–414 (2007).
    [CrossRef]
  8. M. Sokuler, D. Aronov, G. Rosenman, and L. A. Gheber, “Tailored polymer microlenses on treated glass surfaces,” Appl. Phys. Lett.90(20), 203106 (2007).
    [CrossRef]
  9. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
    [CrossRef] [PubMed]
  10. C. Y. Chang, S. Y. Yang, and M. H. Chu, “Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,” Microelectron. Eng.84(2), 355–361 (2007).
    [CrossRef]
  11. C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express14(13), 6253–6258 (2006).
    [CrossRef] [PubMed]
  12. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng.60(3-4), 365–379 (2002).
    [CrossRef]
  13. L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
    [CrossRef]
  14. W. R. Cox, C. Guan, D. J. Hayes, and D. B. Wallace, “Microjet Printing of micro-optical interconnects,” J. Microelectron. Electron. Pack23(3), 346–351 (2000).
  15. D. Xie, H. H. Zhang, X. Y. Shu, J. F. Xiao, and S. Cao, “Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator,” Sci. China. Technol. Soc.53(6), 1605–1611 (2010).
  16. H. H. Zhang, X. Y. Shu, J. F. Xiao, D. Xie, S. Cao, and Y. L. Xu, “A penumatically actuator diaphragm-driven micro-droplet generator,” China Patent 2009103055151.1 (2010).

2010 (3)

R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging. Sci. J58(4), 202–212 (2010).
[CrossRef]

Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett.8(5), 512–514 (2010).
[CrossRef]

D. Xie, H. H. Zhang, X. Y. Shu, J. F. Xiao, and S. Cao, “Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator,” Sci. China. Technol. Soc.53(6), 1605–1611 (2010).

2007 (5)

A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express15(8), 4523–4529 (2007).
[CrossRef] [PubMed]

L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
[CrossRef]

C. Peng, X. G. Liang, Z. L. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B25(2), 410–414 (2007).
[CrossRef]

M. Sokuler, D. Aronov, G. Rosenman, and L. A. Gheber, “Tailored polymer microlenses on treated glass surfaces,” Appl. Phys. Lett.90(20), 203106 (2007).
[CrossRef]

C. Y. Chang, S. Y. Yang, and M. H. Chu, “Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,” Microelectron. Eng.84(2), 355–361 (2007).
[CrossRef]

2006 (2)

C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express14(13), 6253–6258 (2006).
[CrossRef] [PubMed]

H. Ren, Y. H. Lin, and S. T. Wu, “Flat polymeric microlens array,” Opt. Commun.261(2), 296–299 (2006).
[CrossRef]

2004 (1)

W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A, Pure Appl. Opt.6(4), 330–337 (2004).
[CrossRef]

2003 (1)

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

2002 (2)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng.60(3-4), 365–379 (2002).
[CrossRef]

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

2000 (1)

W. R. Cox, C. Guan, D. J. Hayes, and D. B. Wallace, “Microjet Printing of micro-optical interconnects,” J. Microelectron. Electron. Pack23(3), 346–351 (2000).

Akatay, A.

A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express15(8), 4523–4529 (2007).
[CrossRef] [PubMed]

Aronov, D.

M. Sokuler, D. Aronov, G. Rosenman, and L. A. Gheber, “Tailored polymer microlenses on treated glass surfaces,” Appl. Phys. Lett.90(20), 203106 (2007).
[CrossRef]

Baowen, H.

L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
[CrossRef]

Bu, J.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

Cao, S.

D. Xie, H. H. Zhang, X. Y. Shu, J. F. Xiao, and S. Cao, “Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator,” Sci. China. Technol. Soc.53(6), 1605–1611 (2010).

Chang, C. Y.

C. Y. Chang, S. Y. Yang, and M. H. Chu, “Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,” Microelectron. Eng.84(2), 355–361 (2007).
[CrossRef]

C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express14(13), 6253–6258 (2006).
[CrossRef] [PubMed]

Chou, S. Y.

C. Peng, X. G. Liang, Z. L. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B25(2), 410–414 (2007).
[CrossRef]

Chu, M. H.

C. Y. Chang, S. Y. Yang, and M. H. Chu, “Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,” Microelectron. Eng.84(2), 355–361 (2007).
[CrossRef]

Cox, W. R.

W. R. Cox, C. Guan, D. J. Hayes, and D. B. Wallace, “Microjet Printing of micro-optical interconnects,” J. Microelectron. Electron. Pack23(3), 346–351 (2000).

Deng, H.

Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett.8(5), 512–514 (2010).
[CrossRef]

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng.60(3-4), 365–379 (2002).
[CrossRef]

Fu, Z. L.

C. Peng, X. G. Liang, Z. L. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B25(2), 410–414 (2007).
[CrossRef]

Gheber, L. A.

M. Sokuler, D. Aronov, G. Rosenman, and L. A. Gheber, “Tailored polymer microlenses on treated glass surfaces,” Appl. Phys. Lett.90(20), 203106 (2007).
[CrossRef]

Guan, C.

W. R. Cox, C. Guan, D. J. Hayes, and D. B. Wallace, “Microjet Printing of micro-optical interconnects,” J. Microelectron. Electron. Pack23(3), 346–351 (2000).

Guohua, J.

L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
[CrossRef]

Hayes, D. J.

W. R. Cox, C. Guan, D. J. Hayes, and D. B. Wallace, “Microjet Printing of micro-optical interconnects,” J. Microelectron. Electron. Pack23(3), 346–351 (2000).

He, M.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

Hermanne, A.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

Hsieh, K. H.

C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express14(13), 6253–6258 (2006).
[CrossRef] [PubMed]

Huang, L. S.

C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express14(13), 6253–6258 (2006).
[CrossRef] [PubMed]

Jiao, T. T.

Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett.8(5), 512–514 (2010).
[CrossRef]

Junmin, H.

L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
[CrossRef]

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng.60(3-4), 365–379 (2002).
[CrossRef]

Lamprecht, J.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

Li, D. H.

Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett.8(5), 512–514 (2010).
[CrossRef]

Liang, X. G.

C. Peng, X. G. Liang, Z. L. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B25(2), 410–414 (2007).
[CrossRef]

Lili, W.

L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
[CrossRef]

Lin, Y. H.

H. Ren, Y. H. Lin, and S. T. Wu, “Flat polymeric microlens array,” Opt. Commun.261(2), 296–299 (2006).
[CrossRef]

Miyashita, T.

R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging. Sci. J58(4), 202–212 (2010).
[CrossRef]

Moench, W.

W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A, Pure Appl. Opt.6(4), 330–337 (2004).
[CrossRef]

Ngo, N. Q.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng.60(3-4), 365–379 (2002).
[CrossRef]

Ottevaere, H.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

Peng, C.

C. Peng, X. G. Liang, Z. L. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B25(2), 410–414 (2007).
[CrossRef]

Ren, H.

H. Ren, Y. H. Lin, and S. T. Wu, “Flat polymeric microlens array,” Opt. Commun.261(2), 296–299 (2006).
[CrossRef]

Rosenman, G.

M. Sokuler, D. Aronov, G. Rosenman, and L. A. Gheber, “Tailored polymer microlenses on treated glass surfaces,” Appl. Phys. Lett.90(20), 203106 (2007).
[CrossRef]

Schwider, J.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

Shu, X. Y.

D. Xie, H. H. Zhang, X. Y. Shu, J. F. Xiao, and S. Cao, “Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator,” Sci. China. Technol. Soc.53(6), 1605–1611 (2010).

Sokuler, M.

M. Sokuler, D. Aronov, G. Rosenman, and L. A. Gheber, “Tailored polymer microlenses on treated glass surfaces,” Appl. Phys. Lett.90(20), 203106 (2007).
[CrossRef]

Stevens, R.

R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging. Sci. J58(4), 202–212 (2010).
[CrossRef]

Tao, S. H.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

Thienpont, H.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

Tonghai, L.

L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
[CrossRef]

Urey, H.

A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express15(8), 4523–4529 (2007).
[CrossRef] [PubMed]

Veretennicoff, I.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

Volckaerts, B.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

Wallace, D. B.

W. R. Cox, C. Guan, D. J. Hayes, and D. B. Wallace, “Microjet Printing of micro-optical interconnects,” J. Microelectron. Electron. Pack23(3), 346–351 (2000).

Wang, F. N.

Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett.8(5), 512–514 (2010).
[CrossRef]

Wang, Q. H.

Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett.8(5), 512–514 (2010).
[CrossRef]

Wu, S. T.

H. Ren, Y. H. Lin, and S. T. Wu, “Flat polymeric microlens array,” Opt. Commun.261(2), 296–299 (2006).
[CrossRef]

Xiao, J. F.

D. Xie, H. H. Zhang, X. Y. Shu, J. F. Xiao, and S. Cao, “Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator,” Sci. China. Technol. Soc.53(6), 1605–1611 (2010).

Xie, D.

D. Xie, H. H. Zhang, X. Y. Shu, J. F. Xiao, and S. Cao, “Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator,” Sci. China. Technol. Soc.53(6), 1605–1611 (2010).

Yang, S. Y.

C. Y. Chang, S. Y. Yang, and M. H. Chu, “Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,” Microelectron. Eng.84(2), 355–361 (2007).
[CrossRef]

C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express14(13), 6253–6258 (2006).
[CrossRef] [PubMed]

Yuan, X. C.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

Yulin, L.

L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
[CrossRef]

Zappe, H.

W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A, Pure Appl. Opt.6(4), 330–337 (2004).
[CrossRef]

Zhang, H. H.

D. Xie, H. H. Zhang, X. Y. Shu, J. F. Xiao, and S. Cao, “Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator,” Sci. China. Technol. Soc.53(6), 1605–1611 (2010).

Appl. Phys. Lett. (1)

M. Sokuler, D. Aronov, G. Rosenman, and L. A. Gheber, “Tailored polymer microlenses on treated glass surfaces,” Appl. Phys. Lett.90(20), 203106 (2007).
[CrossRef]

Chin. Opt. Lett. (1)

Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett.8(5), 512–514 (2010).
[CrossRef]

Imaging. Sci. J (1)

R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging. Sci. J58(4), 202–212 (2010).
[CrossRef]

J. Microelectron. Electron. Pack (1)

W. R. Cox, C. Guan, D. J. Hayes, and D. B. Wallace, “Microjet Printing of micro-optical interconnects,” J. Microelectron. Electron. Pack23(3), 346–351 (2000).

J. Opt. A, Pure Appl. Opt. (2)

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt.4(4), S22–S28 (2002).
[CrossRef]

W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” J. Opt. A, Pure Appl. Opt.6(4), 330–337 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (1)

C. Peng, X. G. Liang, Z. L. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B25(2), 410–414 (2007).
[CrossRef]

Microelectron. Eng. (2)

C. Y. Chang, S. Y. Yang, and M. H. Chu, “Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,” Microelectron. Eng.84(2), 355–361 (2007).
[CrossRef]

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng.60(3-4), 365–379 (2002).
[CrossRef]

Opt. Commun. (1)

H. Ren, Y. H. Lin, and S. T. Wu, “Flat polymeric microlens array,” Opt. Commun.261(2), 296–299 (2006).
[CrossRef]

Opt. Express (3)

A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express15(8), 4523–4529 (2007).
[CrossRef] [PubMed]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express14(13), 6253–6258 (2006).
[CrossRef] [PubMed]

Optik (Stuttg.) (1)

L. Yulin, L. Tonghai, J. Guohua, H. Baowen, H. Junmin, and W. Lili, “Research on micro-optical lenses fabrication technology,” Optik (Stuttg.)118(8), 395–401 (2007).
[CrossRef]

Sci. China. Technol. Soc. (1)

D. Xie, H. H. Zhang, X. Y. Shu, J. F. Xiao, and S. Cao, “Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator,” Sci. China. Technol. Soc.53(6), 1605–1611 (2010).

Other (1)

H. H. Zhang, X. Y. Shu, J. F. Xiao, D. Xie, S. Cao, and Y. L. Xu, “A penumatically actuator diaphragm-driven micro-droplet generator,” China Patent 2009103055151.1 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic view of experimental apparatus.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

(a) Pneumatically diaphragm-driven DOD inkjet generator and (b) its 3D model.

Fig. 4
Fig. 4

Glass nozzle, (a) ( × 50), outlet diameter:73μm and (b) ( × 30).

Fig. 5
Fig. 5

Ejection process of a single micro-droplet (diameter: about 300μm).

Fig. 6
Fig. 6

Deposition process of micro-droplets on substrates with different contact angle (diameter: about 300μm), (a) contact angle = 29.9°, (b) contact angle = 57.9°, and (c) contact angle = 114.2°.

Fig. 7
Fig. 7

Transmittance of a UV-curable adhesive as function of the wavelength of 400~900nm.

Fig. 8
Fig. 8

Micro-lens array of average diameter 333.28μm, (a) × 50, (b) × 200, (c) × 50, and (d) × 200.

Fig. 9
Fig. 9

Uniformity analysis of 50 randomly selected micro-lenses.

Fig. 10
Fig. 10

Surface roughness measured in a 5 × 5μm area on the fabricated micro-lens.

Fig. 11
Fig. 11

Schematic of measuring system.

Fig. 12
Fig. 12

Image of reticle with spaced lines.

Fig. 13
Fig. 13

Light spots pattern of the micro-lens array.

Fig. 14
Fig. 14

Defects of micro-lens, (a) edge defect ( × 532), (b) particle contamination and cracked surface ( × 1059), (c) cracked surface ( × 850), and (d) non-circular profile ( × 300).

Tables (3)

Tables Icon

Table 1 Material Performance of UV-curable Adhesive

Tables Icon

Table 2 Diameter, Sags and Focal Length of 10 Micro-lenses Randomly Chosen from Micro-lens Array

Tables Icon

Table 3 Measured Focal Length

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R L =( K+1 ) h L 2 + d L 2 2 h L
f= R L n1 = h L + d L 2 / h L 2( n1 )
σ f = f max f min f ¯ ×100%=1.9%

Metrics