Abstract

High indium compositions InGaN films were grown on sapphires using low temperature pulse laser deposition (PLD) with a dual-compositing target. This target was used to overcome the obstacle in the InGaN growth by PLD due to the difficulty of target preparation, and provided a co-deposition reaction, where InGaN grains generated from the indium and GaN vapors deposit on sapphire surface and then act as nucleation seeds to promote further InGaN growth. The effects of co-deposition on growth mechanisms, surface morphology, and electrical properties of films were thoroughly investigated and the results clearly show promise for the development of high indium InGaN films using PLD technique with dual-compositing targets.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997), pp. 201–260.
  2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
    [CrossRef]
  3. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
    [CrossRef]
  4. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
    [CrossRef]
  5. J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
    [CrossRef]
  6. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
    [CrossRef]
  7. C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
    [CrossRef]
  8. E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
    [CrossRef]
  9. B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
    [CrossRef]
  10. R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
    [CrossRef]
  11. P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
    [CrossRef]
  12. J. Ohta, H. Fujioka, T. Honke, and M. Oshima, “Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source,” Thin Solid Films 457(1), 109–113 (2004).
    [CrossRef]
  13. C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
    [CrossRef]
  14. A. Kobayashi, J. Ohta, and H. Fujioka, “Characteristics of InGaN with High In Concentrations Grown on ZnO at Low Temperatures,” Jpn. J. Appl. Phys. 45(24), L611–L613 (2006).
    [CrossRef]
  15. Y. Bu, L. Ma, and M. C. Lin, “Laser‐assisted chemical vapor deposition of InN on Si (100),” J. Vac. Sci. Technol. A 11(6), 2931–2937 (1993).
    [CrossRef]
  16. H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
    [CrossRef]
  17. K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-etched Patterned Sapphire Substrates using Plasma Treatments for Improved GaN Crystal Quality and LED Performance,” J. Electrochem. Soc. 158(10), H988–H993 (2011).
    [CrossRef]
  18. V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
    [CrossRef]
  19. I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
    [CrossRef]
  20. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
    [CrossRef]

2011 (4)

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-etched Patterned Sapphire Substrates using Plasma Treatments for Improved GaN Crystal Quality and LED Performance,” J. Electrochem. Soc. 158(10), H988–H993 (2011).
[CrossRef]

2008 (1)

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

2007 (1)

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

2006 (2)

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

A. Kobayashi, J. Ohta, and H. Fujioka, “Characteristics of InGaN with High In Concentrations Grown on ZnO at Low Temperatures,” Jpn. J. Appl. Phys. 45(24), L611–L613 (2006).
[CrossRef]

2004 (1)

J. Ohta, H. Fujioka, T. Honke, and M. Oshima, “Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source,” Thin Solid Films 457(1), 109–113 (2004).
[CrossRef]

2003 (2)

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

2002 (3)

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

2001 (1)

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

2000 (1)

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[CrossRef]

1997 (1)

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

1996 (1)

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[CrossRef]

1993 (1)

Y. Bu, L. Ma, and M. C. Lin, “Laser‐assisted chemical vapor deposition of InN on Si (100),” J. Vac. Sci. Technol. A 11(6), 2931–2937 (1993).
[CrossRef]

Aderhold, J.

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Adikimenakis, A.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Al-Heji, A. A.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Alves, H.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Androulidaki, M.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

Bechstedt, F.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

Becker, H. W.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

Bhuiyan, A. G.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

Birkner, A.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

Bu, Y.

Y. Bu, L. Ma, and M. C. Lin, “Laser‐assisted chemical vapor deposition of InN on Si (100),” J. Vac. Sci. Technol. A 11(6), 2931–2937 (1993).
[CrossRef]

Chen, X.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Choopun, S.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Chuo, C. C.

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[CrossRef]

Chyi, J. I.

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[CrossRef]

Cruz, S. C.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Davydov, V. Y.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Davydov, V. Yu.

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

DenBaars, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Devi, A.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

Dimakis, E.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

Downes, M.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Emtsev, V. V.

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Farrell, R. M.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Ferguson, I.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

Fischer, R. A.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

Fotakis, C.

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Fujioka, H.

A. Kobayashi, J. Ohta, and H. Fujioka, “Characteristics of InGaN with High In Concentrations Grown on ZnO at Low Temperatures,” Jpn. J. Appl. Phys. 45(24), L611–L613 (2006).
[CrossRef]

J. Ohta, H. Fujioka, T. Honke, and M. Oshima, “Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source,” Thin Solid Films 457(1), 109–113 (2004).
[CrossRef]

Furthmuller, J.

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Georgakilas, A.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

Ghica, C.

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Graul, J.

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Gray, D.

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Harima, H.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

Hashimoto, A.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Hipler, F.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

Ho, I.

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[CrossRef]

Honke, T.

J. Ohta, H. Fujioka, T. Honke, and M. Oshima, “Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source,” Thin Solid Films 457(1), 109–113 (2004).
[CrossRef]

Honsberg, C.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

Horng, R. H.

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-etched Patterned Sapphire Substrates using Plasma Treatments for Improved GaN Crystal Quality and LED Performance,” J. Electrochem. Soc. 158(10), H988–H993 (2011).
[CrossRef]

Hurni, C. A.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

Iliadis, A. A.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Iliopoulos, E.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

Ivanov, S. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

Iza, M.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Jani, O.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

Jiang, H. X.

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

Jones, K. A.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Keller, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Khan, M. A.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Klochikhin, A. A.

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Kobayashi, A.

A. Kobayashi, J. Ohta, and H. Fujioka, “Characteristics of InGaN with High In Concentrations Grown on ZnO at Low Temperatures,” Jpn. J. Appl. Phys. 45(24), L611–L613 (2006).
[CrossRef]

Koynov, S.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Kurtz, S.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

Lang, J. R.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

Lee, C. M.

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[CrossRef]

Li, J.

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

Lin, J. Y.

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

Lin, M. C.

Y. Bu, L. Ma, and M. C. Lin, “Laser‐assisted chemical vapor deposition of InN on Si (100),” J. Vac. Sci. Technol. A 11(6), 2931–2937 (1993).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Ma, L.

Y. Bu, L. Ma, and M. C. Lin, “Laser‐assisted chemical vapor deposition of InN on Si (100),” J. Vac. Sci. Technol. A 11(6), 2931–2937 (1993).
[CrossRef]

Maile, E.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

Matioli, E.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

Melo, L. V.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Meyer, B. K.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Mihailescu, I. N.

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Mironov, B.

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Mishra, U.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Mishra, U. K.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

Monteiro, T.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Mudryi, A. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

Nakamura, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Nee, T. E.

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[CrossRef]

Neufeld, C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Neufeld, C. J.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

Niehus, M.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Ohta, J.

A. Kobayashi, J. Ohta, and H. Fujioka, “Characteristics of InGaN with High In Concentrations Grown on ZnO at Low Temperatures,” Jpn. J. Appl. Phys. 45(24), L611–L613 (2006).
[CrossRef]

J. Ohta, H. Fujioka, T. Honke, and M. Oshima, “Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source,” Thin Solid Films 457(1), 109–113 (2004).
[CrossRef]

Oshima, M.

J. Ohta, H. Fujioka, T. Honke, and M. Oshima, “Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source,” Thin Solid Films 457(1), 109–113 (2004).
[CrossRef]

Ou, S. L.

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-etched Patterned Sapphire Substrates using Plasma Treatments for Improved GaN Crystal Quality and LED Performance,” J. Electrochem. Soc. 158(10), H988–H993 (2011).
[CrossRef]

Pantha, B. N.

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

Papadopoulou, E. L.

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Parala, H.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

Pelekanos, N. T.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

Ristoscu, C.

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Sanguino, P.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Schwarz, R.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Seisyan, R. P.

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

Semchinova, O.

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

Sharma, R. P.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Shen, C. C.

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-etched Patterned Sapphire Substrates using Plasma Treatments for Improved GaN Crystal Quality and LED Performance,” J. Electrochem. Soc. 158(10), H988–H993 (2011).
[CrossRef]

Shen, K. C.

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-etched Patterned Sapphire Substrates using Plasma Treatments for Improved GaN Crystal Quality and LED Performance,” J. Electrochem. Soc. 158(10), H988–H993 (2011).
[CrossRef]

Soares, J.

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Socol, G.

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Speck, J.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Speck, J. S.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

Stringfellow, G. B.

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[CrossRef]

Talyansky, V.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Tsagaraki, K.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

Vekshin, V. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Venkatesan, T.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Vispute, R. D.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Weisbuch, C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Wuu, D. S.

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-etched Patterned Sapphire Substrates using Plasma Treatments for Improved GaN Crystal Quality and LED Performance,” J. Electrochem. Soc. 158(10), H988–H993 (2011).
[CrossRef]

Yamamoto, A.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Yang, J. W.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Appl. Phys. Lett. (8)

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[CrossRef]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[CrossRef]

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett. 71(1), 102–104 (1997).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[CrossRef]

J. Appl. Phys. (1)

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

J. Cryst. Growth (1)

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth 231(1), 68–74 (2001).
[CrossRef]

J. Electrochem. Soc. (1)

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-etched Patterned Sapphire Substrates using Plasma Treatments for Improved GaN Crystal Quality and LED Performance,” J. Electrochem. Soc. 158(10), H988–H993 (2011).
[CrossRef]

J. Vac. Sci. Technol. A (1)

Y. Bu, L. Ma, and M. C. Lin, “Laser‐assisted chemical vapor deposition of InN on Si (100),” J. Vac. Sci. Technol. A 11(6), 2931–2937 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Kobayashi, J. Ohta, and H. Fujioka, “Characteristics of InGaN with High In Concentrations Grown on ZnO at Low Temperatures,” Jpn. J. Appl. Phys. 45(24), L611–L613 (2006).
[CrossRef]

Phys. Status Solidi B (1)

V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), R1–R3 (2002).
[CrossRef]

Phys. Status Solidi, B Basic Res. (1)

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res. 230(2), R4–R6 (2002).
[CrossRef]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 203(1), 102–105 (2006).
[CrossRef]

Solid-State Electron. (1)

P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron. 47(3), 559–563 (2003).
[CrossRef]

Thin Solid Films (2)

J. Ohta, H. Fujioka, T. Honke, and M. Oshima, “Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source,” Thin Solid Films 457(1), 109–113 (2004).
[CrossRef]

C. Ristoscu, C. Ghica, E. L. Papadopoulou, G. Socol, D. Gray, B. Mironov, I. N. Mihailescu, and C. Fotakis, “Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition,” Thin Solid Films 519(19), 6381–6387 (2011).
[CrossRef]

Other (1)

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997), pp. 201–260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Surface morphologies of the InGaN film deposited from F = 0.682 target after (a) 2, (b) 10, (c) 30, (d) 60, and (e) 300 min of deposition times.

Fig. 2
Fig. 2

XPS spectra of In3d and N1s for 2 min growth samples.

Fig. 3
Fig. 3

(a) XRD patterns of the InGaN film following 2, 10, 30, 60, and 300 min of deposition. (b) The ratio of the integrated intensities of the InGaN peak to the InN peak and the RMS roughness as a function of deposition time.

Fig. 4
Fig. 4

Schematic illustration for the InGaN co-deposition behavior on sapphire.

Fig. 5
Fig. 5

XRD patterns of (a) as-deposited and (b) annealed (800°C for 15min) samples labeled A, B, C, and D, respectively.

Fig. 6
Fig. 6

The relationship between the integrated XRD intensities of InGaN and InN peak and F factor.

Fig. 7
Fig. 7

Hall mobility and electron concentration of the four annealed samples labeled A, B, C, and D, respectively.

Tables (1)

Tables Icon

Table 1 Crystal qualities and electrical properties of as-deposited and annealed samples.

Metrics