Abstract

The energy savings of 10 Gbps vertical-cavity surface-emitting lasers (VCSELs) for use in energy-efficient optical network units (ONUs) is critically examined in this work. We experimentally characterize and analytically show that the fast settling time and low power consumption during active and power-saving modes allow the VCSEL-ONU to achieve significant energy savings over the distributed feedback laser (DFB) based ONU. The power consumption per customer using VCSEL-ONUs and DFB-ONUs, is compared through an illustrative example of 10G-EPON for Video-on-Demand delivery. Using energy consumption models and numerical analyses in sleep and doze mode operations, we present an impact study of network and protocol parameters, e.g. polling cycle time, network load, and upstream access scheme used, on the achievable energy savings of VCSEL-ONUs over DFB-ONUs. Guidance on the specific power-saving mode to maximum energy savings throughout the day, is also presented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Baliga, R. Ayre, K. Hinton, W. V. Sorin, and R. Tucker, “Energy Consumption in Optical IP Networks,” J. Lightwave Technol. 27(13), 2391–2403 (2009).
    [CrossRef]
  2. IEEE. Std, 802.3az–2010, [Online]. Available: http://standards.ieee.org/getieee802/download/802.3az-2010.pdf
  3. “GPON power conservation,” ITU-T G-series Recommendations –Supplement 45 (G.sup-45), 05/2009.
  4. J. Mandin, “EPON Powersaving via Sleep Mode,” IEEE P802.3av 10GEPON Task Force Meeting (2008).
  5. E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU BMT Employing Dynamic Power Save Control Circuit,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, NTuD5, (2011).
  6. W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
    [CrossRef]
  7. A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
    [CrossRef]
  8. E. Wong, M. Mueller, P. I. Dias, C. A. Chan, and M. C. Amann, “Energy Saving Strategies for VCSEL ONUs”, Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, OTu1H5 (2012).
  9. Analog Devices ADN2530 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2530.pdf
  10. S. W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashit, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and Drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
  11. NEL Laser Diodes, [Online]. Available: http://www.nttelectronics.com/en/products/photonics/pdf/ NLK5B5EBKA.pdf
  12. Analog Devices ADN2531 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2531.pdf
  13. M. Mueller, C. Grasse, K. Saller, T. Gruendl, G. Boehm, and M. C. Amann, “1.3 μm High-Power Short-Cavity VCSELs for High-Speed Applications”, CLEO/QELS, San Jose, USA, CW3N.2, (2012).
  14. IEEE. Std, 802.3av – 2009, [Online]. Available: “ http://standards.ieee.org/getieee802/download/802.3av-2009.pdf
  15. J. Baliga, R. Ayres, K. Hinton, and R. Tucker, “Architectures for Energy-Efficient IPTV Networks,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf, San Diego, USA, ThQ5 (2008).
  16. C. Jayasundara, A. Nirmalathas, E. Wong, and N. Nadarajah, “Energy Efficient Content Distribution for VoD Services,” Proc. of the IEEE/OSA Opt. Fiber Commun. Conf, Los Angeles, USA, OWR3 (2011).
  17. M. Rabinovich and O. Spatscheck, Web Caching and Replication: Addison Wesley (2001).
  18. B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag. 47, 540–548 (2009).
  19. Y. Hongliang, Z. Dongdong, Y. Z. Ben, and Z. Weimin, “Understanding user behavior in large-scale video-on-demand systems,” Proc. 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, Leuven, Belgium, 1–12 (2006).

2009 (4)

J. Baliga, R. Ayre, K. Hinton, W. V. Sorin, and R. Tucker, “Energy Consumption in Optical IP Networks,” J. Lightwave Technol. 27(13), 2391–2403 (2009).
[CrossRef]

W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
[CrossRef]

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag. 47, 540–548 (2009).

Amann, M. C.

W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
[CrossRef]

Ayre, R.

Baliga, J.

Boffi, P.

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

Bohm, G.

W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
[CrossRef]

Boletti, A.

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

Gatto, A.

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

Hinton, K.

Hofmann, W.

W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
[CrossRef]

Hood, D.

B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag. 47, 540–548 (2009).

Martinelli, M.

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

Mueller, M.

W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
[CrossRef]

Neumeyr, C.

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

Ortsiefer, M.

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
[CrossRef]

Rönneberg, E.

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

Skubic, B.

B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag. 47, 540–548 (2009).

Sorin, W. V.

Tucker, R.

IEEE Commun. Mag. (1)

B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag. 47, 540–548 (2009).

IEEE Photon. Technol. Lett. (2)

W. Hofmann, M. Mueller, G. Bohm, M. Ortsiefer, and M. C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
[CrossRef]

A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinelli, “1.3 µm VCSEL transmission performance up to 12.5 Gbps for metro access networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Other (15)

IEEE. Std, 802.3az–2010, [Online]. Available: http://standards.ieee.org/getieee802/download/802.3az-2010.pdf

“GPON power conservation,” ITU-T G-series Recommendations –Supplement 45 (G.sup-45), 05/2009.

J. Mandin, “EPON Powersaving via Sleep Mode,” IEEE P802.3av 10GEPON Task Force Meeting (2008).

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU BMT Employing Dynamic Power Save Control Circuit,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, NTuD5, (2011).

Y. Hongliang, Z. Dongdong, Y. Z. Ben, and Z. Weimin, “Understanding user behavior in large-scale video-on-demand systems,” Proc. 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, Leuven, Belgium, 1–12 (2006).

E. Wong, M. Mueller, P. I. Dias, C. A. Chan, and M. C. Amann, “Energy Saving Strategies for VCSEL ONUs”, Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, OTu1H5 (2012).

Analog Devices ADN2530 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2530.pdf

S. W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashit, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and Drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).

NEL Laser Diodes, [Online]. Available: http://www.nttelectronics.com/en/products/photonics/pdf/ NLK5B5EBKA.pdf

Analog Devices ADN2531 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2531.pdf

M. Mueller, C. Grasse, K. Saller, T. Gruendl, G. Boehm, and M. C. Amann, “1.3 μm High-Power Short-Cavity VCSELs for High-Speed Applications”, CLEO/QELS, San Jose, USA, CW3N.2, (2012).

IEEE. Std, 802.3av – 2009, [Online]. Available: “ http://standards.ieee.org/getieee802/download/802.3av-2009.pdf

J. Baliga, R. Ayres, K. Hinton, and R. Tucker, “Architectures for Energy-Efficient IPTV Networks,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf, San Diego, USA, ThQ5 (2008).

C. Jayasundara, A. Nirmalathas, E. Wong, and N. Nadarajah, “Energy Efficient Content Distribution for VoD Services,” Proc. of the IEEE/OSA Opt. Fiber Commun. Conf, Los Angeles, USA, OWR3 (2011).

M. Rabinovich and O. Spatscheck, Web Caching and Replication: Addison Wesley (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) 10 Gbps VCSEL transmitter (TX) block. (b) Measurement of Tsett of the VCSEL TX block: Oscilloscope traces of doze mode control from ON to OFF, and the resulting VCSEL output. (c) Oscilloscope traces of doze mode control from OFF to ON, and the resulting VCSEL output.

Fig. 2
Fig. 2

Bit-error-ratio (BER) measurements of free-running and uncooled 10 Gbps VCSEL for back-to-back (B2B) and 20 km single mode fiber (SMF) transmission. Inset: Optical spectrum of laser output.

Fig. 3
Fig. 3

Video-on-Demand (VoD) delivery architecture over a 10G-EPON where distributed video storage is located at the central office (CO).

Fig. 4
Fig. 4

Power consumption per customer and percentage of power savings as a function of supported ONUs.

Fig. 5
Fig. 5

Percentage of energy savings η vs. network load and polling cycle for doze and sleep modes with static TDMA and DBA upstream access.

Fig. 6
Fig. 6

(a) Normalized network load vs time of day (TOD), (b) Polling cycle vs TOD, (c) Percentage of energy savings from sleep and doze mode operations with static upstream access, and (d) Percentage of energy savings from sleep and doze mode operations with dynamic upstream access.

Tables (3)

Tables Icon

Table 1 Summary of Power Consumption and Transition Times of 10 Gbps VCSEL-ONU

Tables Icon

Table 2 Equipment Specifications

Tables Icon

Table 3 Network and Protocol Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P customer ( W )= P storage N + P server N + K P OLT N + P ONU =( V×M×17pW/bit N )+( B× N active ×70W/Gbps N )+ K P OLT N + P ONU
η=100%×[ 1( T active P active + T doze/sleep P doze/sleep T CYC P active ) ]
η=100%×[ 1 ( T CYC . L N + T settling/rec ) P active +( T CYC T active ) P doze/sleep T CYC P active ]
η=100%×[ 1 ( T CYCMAX . L N + T REPORT + T sett/rec ) P active N( T CYCMAX . L N + T REPORT ) P active ( ( N1 )( T CYCMAX L N + T REPORT ) T sett/rec ) P doze/sleep N( T CYCMAX . L N + T REPORT ) P active ]

Metrics