Abstract

We introduce a new concept of the nonlinear control of invisibility cloaking. We study the scattering properties of multi-shell plasmonic nanoparticles with a nonlinear response of one of the shells, and demonstrate that the scattering cross-section of such particles can be controlled by a power of the incident electromagnetic radiation. More specifically, we can either increase or decrease the scattering cross-section by changing the intensity of the external field, as well as control the scattering efficiently and even reverse the radiation direction.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Generalized transformation for nonmagnetic invisibility cloak with minimized scattering

Lujun Huang, Daming Zhou, Jian Wang, Zhifeng Li, Xiaoshuang Chen, and Wei Lu
J. Opt. Soc. Am. B 28(4) 922-928 (2011)

Influence of geometrical perturbation at inner boundaries of invisibility cloaks

Wei Yan, Min Yan, Zhichao Ruan, and Min Qiu
J. Opt. Soc. Am. A 25(4) 968-973 (2008)

Electrically controlled multifrequency ferroelectric cloak

Peining Li, Youwen Liu, and Yunji Meng
Opt. Express 18(12) 12646-12652 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  3. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [Crossref]
  4. A. Alu and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
    [Crossref]
  5. A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
    [Crossref] [PubMed]
  6. B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
    [Crossref] [PubMed]
  7. A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (Nano)particles,” Bulletin of the Russian Academy of Sciences: Physics 74, 89–92 (2010).
    [Crossref]
  8. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Yu. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi: Rapid Res. Lett. 6, 46–48 (2012).
    [Crossref]

2012 (1)

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Yu. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi: Rapid Res. Lett. 6, 46–48 (2012).
[Crossref]

2010 (1)

A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (Nano)particles,” Bulletin of the Russian Academy of Sciences: Physics 74, 89–92 (2010).
[Crossref]

2009 (1)

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

2008 (1)

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref] [PubMed]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

2005 (2)

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

A. Alu and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[Crossref]

Alu, A.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

A. Alu and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[Crossref]

Belov, P. A.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Yu. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi: Rapid Res. Lett. 6, 46–48 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Edwards, B.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

Engheta, N.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[Crossref]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Filonov, D. S.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Yu. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi: Rapid Res. Lett. 6, 46–48 (2012).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kivshar, Yu. S.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Yu. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi: Rapid Res. Lett. 6, 46–48 (2012).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Silveirinha, M. G.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

Slobozhanyuk, A. P.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Yu. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi: Rapid Res. Lett. 6, 46–48 (2012).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Zharov, A. A.

A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (Nano)particles,” Bulletin of the Russian Academy of Sciences: Physics 74, 89–92 (2010).
[Crossref]

Zharova, N. A.

A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (Nano)particles,” Bulletin of the Russian Academy of Sciences: Physics 74, 89–92 (2010).
[Crossref]

Bulletin of the Russian Academy of Sciences: Physics (1)

A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (Nano)particles,” Bulletin of the Russian Academy of Sciences: Physics 74, 89–92 (2010).
[Crossref]

J. Appl. Phys. (1)

A. Alu and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[Crossref]

Phys. Rev. E (1)

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Phys. Rev. Lett. (2)

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

Phys. Status Solidi: Rapid Res. Lett. (1)

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Yu. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi: Rapid Res. Lett. 6, 46–48 (2012).
[Crossref]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Normalized scattering cross-sections for several lower-order multipoles (solid lines, m=0,1,2), as well as total SCS (dashed) as functions of the dielectric constant ε2 of the second layer. Parameters are k0R1,2,3 = 0.4, 0.5, 0.866, ε1,3 = 15, 2, (ε2) = 0.02. Inset shows geometry of the problem. (b) Dependencies of the normalized multipole and total scattering cross-sections on the dielectric constant ε3 of the external layer. Dimensions of the cylinders and dielectric permittivity of the core are the same as in (a), ε2 = −0.1+0.02i.

Fig. 2
Fig. 2

Distribution of the intensity of the electric field in (a) the whole space (b) everywhere but layer 2. Sizes of the shells are the same as in Fig. 1. ε1,2,3 = 15; 0.02 + 0.02i; 2. The fields are normalized to the amplitude of the incident wave.

Fig. 3
Fig. 3

Normalized scattering cross-sections for several lower-order multipoles (solid lines, m = 0,1), as well as total SCS (dashed) as functions of the intensity. (a) Defocusing non-linearity, ε2 = 0.1 + 0.02i, (b) focusing nonlinearity, ε2 = −0.1 + 0.02i; α = 5 · 10−8 esu.

Fig. 4
Fig. 4

Directivity of the nonlinear cloak. Color map shows scattering amplitude, while radial coordinate corresponds to the intensity of the incident wave (a) Defocusing nonlinearity, ε2 = 0.1 + 0.02i, (b) focusing nonlinearity, ε2 = −0.1 + 0.02i; α = 5 · 10−8 esu.

Fig. 5
Fig. 5

Distribution of the scattering electric field for three different values of the incident wave intensity: (a) 2.5 · 104W/cm2; (b) 2.51 · 106W/cm2, and (c) 2.66 · 106W/cm2, α = −5 · 10−8, ε2 = 0.1 − 0.02i.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R 2 = R 3 ( ε 3 1 ε 3 + 1 ) 1 / 2 .
h = z 0 A 0 exp ( i ω t i k 0 r cos ϕ ) = z 0 A 0 exp ( i ω t ) [ J 0 ( ρ ) + 2 m = 1 i m J m ( ρ ) cos ( m ϕ ) ] ,
H ( j ) = m = 0 M [ A m ( j ) J m ( ρ j ) + B m ( j ) Y m ( ρ j ) ] cos ( m ϕ ) ,
E ϕ ( j ) = m = 0 M k j k 0 { A m ( j ) J m ( ρ j ) + B m ( j ) Y m ( ρ j ) } cos ( m ϕ ) / ( i ε j ) , E r ( j ) = m = 0 M { ( A m ( j ) J m ( ρ j ) + B m ( j ) Y m ( ρ j ) } [ m sin ( m ϕ ) ] / ( i k 0 r ε j ) .
Δ H m ( r ) + [ ε ( r ) + δ ε ( 0 ) ( r ) m 2 / r 2 ] H m ( r ) = [ δ ε H _ ] m ,

Metrics