Abstract

Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).
  2. K. Hotate and M. Enyama, “Dynamic strain measurement by FBG sensing system with synthesis of optical coherence function,” Opt. Fiber Sens. 16, 522–525 (2002).
  3. K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13(10), 1523–1534 (2002).
    [CrossRef]
  4. D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, and E. Udd, “Characterization of a fiber-optic shape and position sensor,” Proc. SPIE 6167, 616704(2006).
    [CrossRef]
  5. T. Guo, H. Y. Tam, and J. S. Albert, “Chirped and tilted fiber Bragg grating edge filter for in-fiber sensor interrogation,” in CLEO:2011- Science and Innovations, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThL3.
  6. C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
    [CrossRef]
  7. R. M. Gavalis, P. Y. Wong, J. A. Eisenstein, L. Lilge, and C. G. L. Cao, “Localized active-cladding optical fiber bend sensor,” Opt. Eng. 49(6), 064401 (2010).
    [CrossRef]
  8. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
    [CrossRef]
  9. X. L. Zhu, S. K. Lam, and D. Lo, “Distribut ed-feedback dye-doped solgel silica lasers,” Appl. Opt. 39(18), 3104–3107 (2000).
    [CrossRef] [PubMed]
  10. M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, “Photopumped organic solid-state dye laser with a second-order distributed feedback cavity,” Jpn. J. Appl. Phys. 40(Part 2, No. 8A), L799–L801 (2001).
    [CrossRef]
  11. Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
    [CrossRef]
  12. Y. Yang, R. Goto, S. Omi, K. Yamashita, H. Watanabe, M. Miyazaki, and Y. Oki, “Highly photo-stable dye doped solid-state distributed-feedback (DFB) channeled waveguide lasers by a pen-drawing technique,” Opt. Express 18(21), 22080–22089 (2010).
    [CrossRef] [PubMed]
  13. H. Yoshioka, Y. Yang, H. Watanabe, and Y. Oki, “Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser,” Opt. Express 20(4), 4690–4696 (2012).
    [CrossRef] [PubMed]

2012 (1)

2010 (2)

2008 (1)

C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
[CrossRef]

2006 (1)

D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, and E. Udd, “Characterization of a fiber-optic shape and position sensor,” Proc. SPIE 6167, 616704(2006).
[CrossRef]

2002 (3)

K. Hotate and M. Enyama, “Dynamic strain measurement by FBG sensing system with synthesis of optical coherence function,” Opt. Fiber Sens. 16, 522–525 (2002).

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13(10), 1523–1534 (2002).
[CrossRef]

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
[CrossRef]

2001 (1)

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, “Photopumped organic solid-state dye laser with a second-order distributed feedback cavity,” Jpn. J. Appl. Phys. 40(Part 2, No. 8A), L799–L801 (2001).
[CrossRef]

2000 (1)

1989 (1)

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

1971 (1)

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Aso, K.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
[CrossRef]

Cantwell, W. J.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13(10), 1523–1534 (2002).
[CrossRef]

Cao, C. G. L.

R. M. Gavalis, P. Y. Wong, J. A. Eisenstein, L. Lilge, and C. G. L. Cao, “Localized active-cladding optical fiber bend sensor,” Opt. Eng. 49(6), 064401 (2010).
[CrossRef]

C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
[CrossRef]

Culshaw, B.

D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, and E. Udd, “Characterization of a fiber-optic shape and position sensor,” Proc. SPIE 6167, 616704(2006).
[CrossRef]

Ecke, W.

D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, and E. Udd, “Characterization of a fiber-optic shape and position sensor,” Proc. SPIE 6167, 616704(2006).
[CrossRef]

Eisenstein, J. A.

R. M. Gavalis, P. Y. Wong, J. A. Eisenstein, L. Lilge, and C. G. L. Cao, “Localized active-cladding optical fiber bend sensor,” Opt. Eng. 49(6), 064401 (2010).
[CrossRef]

Enyama, M.

K. Hotate and M. Enyama, “Dynamic strain measurement by FBG sensing system with synthesis of optical coherence function,” Opt. Fiber Sens. 16, 522–525 (2002).

Gavalis, R. M.

R. M. Gavalis, P. Y. Wong, J. A. Eisenstein, L. Lilge, and C. G. L. Cao, “Localized active-cladding optical fiber bend sensor,” Opt. Eng. 49(6), 064401 (2010).
[CrossRef]

C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
[CrossRef]

Glenn, W. H.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

Goto, R.

Hotate, K.

K. Hotate and M. Enyama, “Dynamic strain measurement by FBG sensing system with synthesis of optical coherence function,” Opt. Fiber Sens. 16, 522–525 (2002).

Ichikawa, M.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, “Photopumped organic solid-state dye laser with a second-order distributed feedback cavity,” Jpn. J. Appl. Phys. 40(Part 2, No. 8A), L799–L801 (2001).
[CrossRef]

Inaudi, D.

D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, and E. Udd, “Characterization of a fiber-optic shape and position sensor,” Proc. SPIE 6167, 616704(2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Koyama, T.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, “Photopumped organic solid-state dye laser with a second-order distributed feedback cavity,” Jpn. J. Appl. Phys. 40(Part 2, No. 8A), L799–L801 (2001).
[CrossRef]

Kuang, K. S. C.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13(10), 1523–1534 (2002).
[CrossRef]

Lam, S. K.

Lilge, L.

R. M. Gavalis, P. Y. Wong, J. A. Eisenstein, L. Lilge, and C. G. L. Cao, “Localized active-cladding optical fiber bend sensor,” Opt. Eng. 49(6), 064401 (2010).
[CrossRef]

C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
[CrossRef]

Lo, D.

Maeda, M.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
[CrossRef]

Meltz, G.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

Miyazaki, M.

Morey, W. W.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

Oki, Y.

Omi, S.

Peters, K. J.

D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, and E. Udd, “Characterization of a fiber-optic shape and position sensor,” Proc. SPIE 6167, 616704(2006).
[CrossRef]

Scully, P. J.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13(10), 1523–1534 (2002).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Suganuma, N.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, “Photopumped organic solid-state dye laser with a second-order distributed feedback cavity,” Jpn. J. Appl. Phys. 40(Part 2, No. 8A), L799–L801 (2001).
[CrossRef]

Tanaka, Y.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, “Photopumped organic solid-state dye laser with a second-order distributed feedback cavity,” Jpn. J. Appl. Phys. 40(Part 2, No. 8A), L799–L801 (2001).
[CrossRef]

Taniguchi, Y.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, “Photopumped organic solid-state dye laser with a second-order distributed feedback cavity,” Jpn. J. Appl. Phys. 40(Part 2, No. 8A), L799–L801 (2001).
[CrossRef]

Udd, E.

D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, and E. Udd, “Characterization of a fiber-optic shape and position sensor,” Proc. SPIE 6167, 616704(2006).
[CrossRef]

Vasa, N. J.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
[CrossRef]

Watanabe, H.

Wong, P. Y.

R. M. Gavalis, P. Y. Wong, J. A. Eisenstein, L. Lilge, and C. G. L. Cao, “Localized active-cladding optical fiber bend sensor,” Opt. Eng. 49(6), 064401 (2010).
[CrossRef]

C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
[CrossRef]

Xing, H.

C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
[CrossRef]

Yamashita, K.

Yang, Y.

Yoshioka, H.

Zamarripa, N.

C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
[CrossRef]

Zhu, X. L.

Zuo, D.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, “Photopumped organic solid-state dye laser with a second-order distributed feedback cavity,” Jpn. J. Appl. Phys. 40(Part 2, No. 8A), L799–L801 (2001).
[CrossRef]

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13(10), 1523–1534 (2002).
[CrossRef]

Opt. Eng. (1)

R. M. Gavalis, P. Y. Wong, J. A. Eisenstein, L. Lilge, and C. G. L. Cao, “Localized active-cladding optical fiber bend sensor,” Opt. Eng. 49(6), 064401 (2010).
[CrossRef]

Opt. Express (2)

Opt. Fiber Sens. (1)

K. Hotate and M. Enyama, “Dynamic strain measurement by FBG sensing system with synthesis of optical coherence function,” Opt. Fiber Sens. 16, 522–525 (2002).

Proc. SPIE (3)

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, and E. Udd, “Characterization of a fiber-optic shape and position sensor,” Proc. SPIE 6167, 616704(2006).
[CrossRef]

C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522, 693522-8 (2008).
[CrossRef]

Other (1)

T. Guo, H. Y. Tam, and J. S. Albert, “Chirped and tilted fiber Bragg grating edge filter for in-fiber sensor interrogation,” in CLEO:2011- Science and Innovations, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThL3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

, schematic cross section (above) and fabrication process of DFB laser on polymeric optical fiber.(below, left) Microscopic image of drawn DFB laser on a POF(below, right)

Fig. 2
Fig. 2

DFB laser spectrum observed from the POF end point.

Fig. 3
Fig. 3

Bending properties (Left) The theoretical bending response curve (as solid lines), and the experimental results from DFB lasers of Rhodamine6G on CK-10 and CK-20. (Right) Two DFB lasers of Rhodamine640 were fabricated on a POF with right angular separation. They have different Bragg wavelength and independently showed shifts for horizontal and vertical bending.

Fig. 4
Fig. 4

(left) Rotation drawing fabrication of DFB laser for twisting detection and conformation of the twisting test . (right) Result of spectral shift on twisting detection.

Fig. 5
Fig. 5

Cancellation of the temperature influence of DFB laser on POF. Calculated Bragg wavelength functions of temperature based on linear expansion (solid line) and index change (dashed line). Circle symbols are experimental result.

Fig. 6
Fig. 6

Temperature correction using three DFB lasers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ 0 ( d 2 κ )
λ θ = d 2 ( θ 0 θ) λ 0 ( L 2 + d 2 θ 0 2 ){( L 2 + d 2 ( θ 0 2 + θ 2 )}
λ=2 n eff Λ 0 { 1+( dn dT +α )T+α dn dT T 2 }
R x d 2 2+ 2 + σ x + σ y + 2 σ T (1+ 2 ) σ x σ y 2 σ T R x d 2 2+ 2 + σ x + σ y + 2 σ T σ x (1+ 2 ) σ y + 2 σ T ΔT σ x + σ y + 2 σ T (2+ 2 )(dn/dT+α)

Metrics