Abstract

Polarization division multiplexing (PDM) and wavelength division multiplexing (WDM) are essential techniques for enhancing the capacity of photonic networks and facilitating the efficient use of optical frequency resources. 2 PDM × 2 WDM × 10 Gbps error-free simultaneous transmissions in the 1.0-µm waveband and C-waveband are successfully demonstrated for the first time using an ultra-broadband photonic transport system over a 14.4-km-long holey fiber transmission line.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
    [CrossRef]
  2. N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
    [CrossRef]
  3. N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
    [CrossRef] [PubMed]
  4. K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm. E90-B(10), 2803–2808 (2007).
    [CrossRef]
  5. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [CrossRef]
  6. H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
    [CrossRef]
  7. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [CrossRef]
  8. R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G, 72340G-8 (2009).
    [CrossRef]
  9. N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
    [CrossRef]
  10. N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
    [CrossRef]
  11. Xiang Zhou and Jianjun Yu, “High capacity coherent PDM-WDM transmission system demonstrations,” in Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 50–51.
  12. N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
    [CrossRef] [PubMed]
  13. N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
    [CrossRef]
  14. R. Noé, S. Hinz, D. Sandel, and F. Wüst, “Crosstalk Detection Schemes for Polarization Division Multiplex Transmission,” J. Lightwave Technol. 19(10), 1469–1475 (2001).
    [CrossRef]
  15. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett. 37(23), 1399–1401 (2001).
    [CrossRef]
  16. K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
    [CrossRef]
  17. K. Mukasa, K. Imamura, R. Sugizaki, and T. Yagi, “Comparisons of Merits on Wide-Band Transmission Systems between Using Extremely Improved Solid SMFs with Aeff of 160µm2 and Loss of 0.175dB/km and Using Large-Aeff Holey Fibers Enabling Transmission over 600nm Bandwidth,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OThR.

2012 (1)

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
[CrossRef]

2011 (1)

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

2010 (2)

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

2009 (2)

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G, 72340G-8 (2009).
[CrossRef]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
[CrossRef]

2008 (2)

2007 (3)

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
[CrossRef]

K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm. E90-B(10), 2803–2808 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

2006 (1)

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[CrossRef]

2001 (2)

R. Noé, S. Hinz, D. Sandel, and F. Wüst, “Crosstalk Detection Schemes for Polarization Division Multiplex Transmission,” J. Lightwave Technol. 19(10), 1469–1475 (2001).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett. 37(23), 1399–1401 (2001).
[CrossRef]

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Aiso, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
[CrossRef]

Akahane, K.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
[CrossRef]

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G, 72340G-8 (2009).
[CrossRef]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[CrossRef] [PubMed]

Burrows, E. C.

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Centanni, J. C.

Charlet, G.

Doerr, C. R.

Fujita, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett. 37(23), 1399–1401 (2001).
[CrossRef]

Gnauck, A. H.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Hasegawa, H.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[CrossRef]

Higuma, K.

Hinz, S.

Hirooka, T.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[CrossRef]

Imamura, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
[CrossRef]

Kanno, A.

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

Katouf, R.

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G, 72340G-8 (2009).
[CrossRef]

Kawanishi, S.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett. 37(23), 1399–1401 (2001).
[CrossRef]

Kawanishi, T.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
[CrossRef]

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G, 72340G-8 (2009).
[CrossRef]

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[CrossRef]

Kinoshita, Y.

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

Kubota, H.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett. 37(23), 1399–1401 (2001).
[CrossRef]

Kurokawa, K.

K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm. E90-B(10), 2803–2808 (2007).
[CrossRef]

Miyabe, R.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
[CrossRef]

Mukasa, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
[CrossRef]

Nakajima, K.

K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm. E90-B(10), 2803–2808 (2007).
[CrossRef]

Nakazawa, M.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Noé, R.

Oikawa, Y.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[CrossRef]

Omigawa, Y.

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Sakamoto, T.

Sandel, D.

Sankawa, I.

K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm. E90-B(10), 2803–2808 (2007).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Sotobayashi, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
[CrossRef]

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G, 72340G-8 (2009).
[CrossRef]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
[CrossRef]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[CrossRef] [PubMed]

Sugizaki, R.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
[CrossRef]

Suzuki, K.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett. 37(23), 1399–1401 (2001).
[CrossRef]

Tajima, K.

K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm. E90-B(10), 2803–2808 (2007).
[CrossRef]

Takai, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
[CrossRef]

Takashima, K.

Tanaka, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett. 37(23), 1399–1401 (2001).
[CrossRef]

Tran, P.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Tsuchiya, M.

Tsujikawa, K.

K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm. E90-B(10), 2803–2808 (2007).
[CrossRef]

Winzer, P. J.

Wüst, F.

Yagi, T.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
[CrossRef]

Yamamoto, N.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
[CrossRef]

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G, 72340G-8 (2009).
[CrossRef]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
[CrossRef]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[CrossRef] [PubMed]

Yokoyama, H.

Yoshida, M.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[CrossRef]

Yoshioka, Y.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
[CrossRef]

Electron. Lett. (1)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre,” Electron. Lett. 37(23), 1399–1401 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

IEICE Electron. Express (1)

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[CrossRef]

IEICE Trans. Comm. (1)

K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10Gb/s WDM Transmission at 1064 and 1550nm over 24km Photonic Crystal Fiber with Negative Power Penalties,” IEICE Trans. Comm. E90-B(10), 2803–2808 (2007).
[CrossRef]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (2)

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources,” Jpn. J. Appl. Phys. 51(2), 02BG08 (2012).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Opt. Express (2)

Proc. SPIE (4)

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67790J, 67790J-11 (2007).
[CrossRef]

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G, 72340G-8 (2009).
[CrossRef]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
[CrossRef]

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-µm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F, 79580F-9 (2011).
[CrossRef]

Other (2)

Xiang Zhou and Jianjun Yu, “High capacity coherent PDM-WDM transmission system demonstrations,” in Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 50–51.

K. Mukasa, K. Imamura, R. Sugizaki, and T. Yagi, “Comparisons of Merits on Wide-Band Transmission Systems between Using Extremely Improved Solid SMFs with Aeff of 160µm2 and Loss of 0.175dB/km and Using Large-Aeff Holey Fibers Enabling Transmission over 600nm Bandwidth,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OThR.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ultra-broadband PDM and WDM photonic transport system using a 14.4-km-long holey fiber transmission line for simultaneous transmissions in the T- and C-wavebands. PBS: polarization beam splitter, PBC: polarization beam combiner, and PC: polarization controller. YDFA: ytterbium-doped fiber amplifier for T-band, EDFA: erbium-doped fiber amplifier for C-band, and SOA: semiconductor optical amplifier. ATT: optical attenuator, PD: broadband photo-detector for T- and C-wavebands, and CDR: electrical clock-data recovery circuit.

Fig. 2
Fig. 2

Simulated optical mode field in the holey fiber at wavelengths of 1050nm and 1550nm used for the estimation of the endlessly single-mode characteristics.

Fig. 3
Fig. 3

Optical spectra (a) before and (b) after transmission. Estimation of polarization cross-talk using optical spectra in the (c) T- and (d) C-wavebands. Estimation of wavelength cross-talk using optical spectra in the (e) T- and (f) C-wavebands.

Fig. 4
Fig. 4

Eye diagrams after transmission at each output port Out-Px and Out-Py of the ultra-broadband PDM and WDM photonic transport system for the T-waveband.

Fig. 5
Fig. 5

Dependence of the BER on the received power in the ultra-broadband PDM and WDM photonic transport system for the (a) T- and (b) C-wavebands.

Tables (1)

Tables Icon

Table 1 Polarization and Wavelength Cross-talk Values in the T- and C-Wavebands

Metrics