Abstract

In the artwork conservation field, non contact diagnostic and imaging methods are widely used and most welcomed. In this work a new imaging tool, called Thermal Quasi-Reflectography (TQR), is proposed and demonstrated. It is based on the recording, by suitable procedures, of reflected infrared radiation in the MWIR band (3-5 μm). The technique, simple to perform, can provide very interesting results in the analysis of the painting surfaces. TQR was demonstrated in situ on two famous artworks: the Zavattari’s frescos in the Chapel of Theodelinda (Italy) and the masterpiece by Piero della Francesca “The Resurrection” (Italy).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Carroll, The Annotated Alice: The Definitive Edition, Martin Gardner, ed. (W.W. Norton & Co., 1999), Chap. 1.
  2. J. D. Barrow, Cosmic Imagery: Key Images in the History of Science (W.W. Norton & Co., 2008).
  3. D. Paoletti and G. Schirripa Spagnolo, “Interferometric methods for artwork diagnostics” in Progress in Optics Vol. XXXV, E. Wolf, ed. (Elsevier, 1996).
  4. V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
    [CrossRef]
  5. D. Ambrosini and D. Paoletti, “Holographic and speckle methods for the analysis of panel paintings. Developments since the early 1970s,” Rev. Conserv. 5, 38–48 (2004).
  6. P. K. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2000).
  7. P. M. Boone and V. B. Markov, “Examination of museum object by means of video holography,” Stud. Conserv. 40(2), 103–109 (1995).
    [CrossRef]
  8. G. Schirripa Spagnolo, D. Ambrosini, and G. Guattari, “Electro-optic holography system and digital image processing for in situ analysis of microclimate variations on artworks,” J. Opt. 28(3), 99–106 (1997).
    [CrossRef]
  9. J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).
  10. K. D. Hinsch, G. Gülker, and H. Helmers, “Checkup for aging artwork: optical tools to monitor mechanical behaviour,” Opt. Las. Engin. 45(5), 578–588 (2007).
    [CrossRef]
  11. J. R. J. van Asperen de Boer, “Infrared reflectography: a method for the examination of paintings,” Appl. Opt. 7(9), 1711–1714 (1968).
    [CrossRef] [PubMed]
  12. C. Daffara and R. Fontana, “Multispectral infrared reflectography to differentiate features in paintings,” Microsc. Microanal. 17(5), 691–695 (2011).
    [CrossRef] [PubMed]
  13. J. K. Delaney, J. G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K. M. Morales, E. R. de la Rie, and A. Hoenigswald, “Visible and infrared imaging spectroscopy of Picasso’s Harlequin Musician: mapping and identification of artist materials in situ,” Appl. Spectrosc. 64(6), 584–594 (2010).
    [CrossRef] [PubMed]
  14. X. Maldague, Theory and Practice of Infrared Technology for non destructive Testing (Wiley, 2001).
  15. D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
    [CrossRef]
  16. C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).
  17. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).
  18. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
    [CrossRef] [PubMed]
  19. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
    [CrossRef]
  20. K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz Spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
    [CrossRef]
  21. A. J. L. Adam, P. C. Planken, S. Meloni, and J. Dik, “TeraHertz imaging of hidden paint layers on canvas,” Opt. Express 17(5), 3407–3416 (2009).
    [CrossRef] [PubMed]
  22. M. R. Derrick, D. Stulik, and J. M. Landry, Infrared Spectroscopy in Conservation Science, (The Getty Conservation Institute, 1999).

2011 (2)

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

C. Daffara and R. Fontana, “Multispectral infrared reflectography to differentiate features in paintings,” Microsc. Microanal. 17(5), 691–695 (2011).
[CrossRef] [PubMed]

2010 (2)

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

J. K. Delaney, J. G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K. M. Morales, E. R. de la Rie, and A. Hoenigswald, “Visible and infrared imaging spectroscopy of Picasso’s Harlequin Musician: mapping and identification of artist materials in situ,” Appl. Spectrosc. 64(6), 584–594 (2010).
[CrossRef] [PubMed]

2009 (1)

2007 (2)

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz Spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[CrossRef]

K. D. Hinsch, G. Gülker, and H. Helmers, “Checkup for aging artwork: optical tools to monitor mechanical behaviour,” Opt. Las. Engin. 45(5), 578–588 (2007).
[CrossRef]

2006 (1)

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

2005 (2)

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[CrossRef] [PubMed]

J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).

2004 (2)

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

D. Ambrosini and D. Paoletti, “Holographic and speckle methods for the analysis of panel paintings. Developments since the early 1970s,” Rev. Conserv. 5, 38–48 (2004).

2003 (1)

V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
[CrossRef]

1997 (1)

G. Schirripa Spagnolo, D. Ambrosini, and G. Guattari, “Electro-optic holography system and digital image processing for in situ analysis of microclimate variations on artworks,” J. Opt. 28(3), 99–106 (1997).
[CrossRef]

1995 (1)

P. M. Boone and V. B. Markov, “Examination of museum object by means of video holography,” Stud. Conserv. 40(2), 103–109 (1995).
[CrossRef]

1968 (1)

Adam, A. J. L.

Ambrosini, D.

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

D. Ambrosini and D. Paoletti, “Holographic and speckle methods for the analysis of panel paintings. Developments since the early 1970s,” Rev. Conserv. 5, 38–48 (2004).

G. Schirripa Spagnolo, D. Ambrosini, and G. Guattari, “Electro-optic holography system and digital image processing for in situ analysis of microclimate variations on artworks,” J. Opt. 28(3), 99–106 (1997).
[CrossRef]

Arecchi, T.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

Bellini, M.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

Bellucci, R.

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

Bettini, F.

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

Bonarou, A.

V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
[CrossRef]

Boone, P. M.

P. M. Boone and V. B. Markov, “Examination of museum object by means of video holography,” Stud. Conserv. 40(2), 103–109 (1995).
[CrossRef]

Chambers, A. R.

J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).

Cid, M.

Corsi, C.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

Cucu, R.

Daffara, C.

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

C. Daffara and R. Fontana, “Multispectral infrared reflectography to differentiate features in paintings,” Microsc. Microanal. 17(5), 691–695 (2011).
[CrossRef] [PubMed]

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

de la Rie, E. R.

Delaney, J. K.

Di Biase, R.

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

Dik, J.

Dobre, G.

Dokos, L.

J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).

Dulie-Barton, J.

J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).

Eastop, D.

J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).

Fontana, R.

C. Daffara and R. Fontana, “Multispectral infrared reflectography to differentiate features in paintings,” Microsc. Microanal. 17(5), 691–695 (2011).
[CrossRef] [PubMed]

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

Fotakis, C.

V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
[CrossRef]

Frosinini, C.

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

Fukunaga, K.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz Spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[CrossRef]

Guattari, G.

G. Schirripa Spagnolo, D. Ambrosini, and G. Guattari, “Electro-optic holography system and digital image processing for in situ analysis of microclimate variations on artworks,” J. Opt. 28(3), 99–106 (1997).
[CrossRef]

Gülker, G.

K. D. Hinsch, G. Gülker, and H. Helmers, “Checkup for aging artwork: optical tools to monitor mechanical behaviour,” Opt. Las. Engin. 45(5), 578–588 (2007).
[CrossRef]

Hayashi, S.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz Spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[CrossRef]

Helmers, H.

K. D. Hinsch, G. Gülker, and H. Helmers, “Checkup for aging artwork: optical tools to monitor mechanical behaviour,” Opt. Las. Engin. 45(5), 578–588 (2007).
[CrossRef]

Hinsch, K. D.

K. D. Hinsch, G. Gülker, and H. Helmers, “Checkup for aging artwork: optical tools to monitor mechanical behaviour,” Opt. Las. Engin. 45(5), 578–588 (2007).
[CrossRef]

Hoenigswald, A.

Hosako, I.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz Spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[CrossRef]

Kowalczyk, A.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Lennard, F.

J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).

Liang, H.

Littleton, R.

Mariotti, P. I.

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

Markov, V. B.

P. M. Boone and V. B. Markov, “Examination of museum object by means of video holography,” Stud. Conserv. 40(2), 103–109 (1995).
[CrossRef]

Materazzi, M.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

Meloni, S.

Morales, K. M.

Ogawa, Y.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz Spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[CrossRef]

Palmer, M.

Paoletti, D.

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

D. Ambrosini and D. Paoletti, “Holographic and speckle methods for the analysis of panel paintings. Developments since the early 1970s,” Rev. Conserv. 5, 38–48 (2004).

Pedro, J.

Pezzati, L.

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

Planken, P. C.

Podoleanu, A.

Rouba, B.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Sahin, M.

J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).

Saunders, D.

Schirripa Spagnolo, G.

G. Schirripa Spagnolo, D. Ambrosini, and G. Guattari, “Electro-optic holography system and digital image processing for in situ analysis of microclimate variations on artworks,” J. Opt. 28(3), 99–106 (1997).
[CrossRef]

Smyrnakis, N.

V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
[CrossRef]

Stassinopulos, S.

V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
[CrossRef]

Targowski, P.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Thoury, M.

Tornari, V.

V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
[CrossRef]

Tortora, A.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

van Asperen de Boer, J. R. J.

Wojtkowski, M.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Zafiropulos, V.

V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
[CrossRef]

Zeibel, J. G.

Appl. Opt. (1)

Appl. Spectrosc. (1)

IEICE Electron. Express (1)

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz Spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[CrossRef]

J. Cult. Herit. (2)

D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, and F. Bettini, “Integrated reflectography and thermography for wooden paintings diagnostics,” J. Cult. Herit. 11(2), 196–204 (2010).
[CrossRef]

V. Tornari, A. Bonarou, V. Zafiropulos, C. Fotakis, N. Smyrnakis, and S. Stassinopulos, “Structural evaluation of restoration processes with holographic diagnostic inspection,” J. Cult. Herit. 4, 347–354 (2003).
[CrossRef]

J. Opt. (1)

G. Schirripa Spagnolo, D. Ambrosini, and G. Guattari, “Electro-optic holography system and digital image processing for in situ analysis of microclimate variations on artworks,” J. Opt. 28(3), 99–106 (1997).
[CrossRef]

Microsc. Microanal. (1)

C. Daffara and R. Fontana, “Multispectral infrared reflectography to differentiate features in paintings,” Microsc. Microanal. 17(5), 691–695 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Las. Engin. (1)

K. D. Hinsch, G. Gülker, and H. Helmers, “Checkup for aging artwork: optical tools to monitor mechanical behaviour,” Opt. Las. Engin. 45(5), 578–588 (2007).
[CrossRef]

Opt. Spectrosc. (1)

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “A new tool for painting diagnostics: optical coherence tomography,” Opt. Spectrosc. 101(1), 23–26 (2006).
[CrossRef]

Proc. SPIE (1)

C. Daffara, L. Pezzati, D. Ambrosini, D. Paoletti, R. Di Biase, P. I. Mariotti, and C. Frosinini, “Wide-band IR imaging in the NIR-MIR-FIR regions for in-situ analysis of frescoes,” (invited paper), Proc. SPIE 8084, 8084061–80840612 (2011).

Rev. Conserv. (2)

J. Dulie-Barton, L. Dokos, D. Eastop, F. Lennard, A. R. Chambers, and M. Sahin, “Deformation and strain measurement techniques for the inspection of damage in works of art,” Rev. Conserv. 6, 63–73 (2005).

D. Ambrosini and D. Paoletti, “Holographic and speckle methods for the analysis of panel paintings. Developments since the early 1970s,” Rev. Conserv. 5, 38–48 (2004).

Stud. Conserv. (2)

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

P. M. Boone and V. B. Markov, “Examination of museum object by means of video holography,” Stud. Conserv. 40(2), 103–109 (1995).
[CrossRef]

Other (6)

M. R. Derrick, D. Stulik, and J. M. Landry, Infrared Spectroscopy in Conservation Science, (The Getty Conservation Institute, 1999).

P. K. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2000).

L. Carroll, The Annotated Alice: The Definitive Edition, Martin Gardner, ed. (W.W. Norton & Co., 1999), Chap. 1.

J. D. Barrow, Cosmic Imagery: Key Images in the History of Science (W.W. Norton & Co., 2008).

D. Paoletti and G. Schirripa Spagnolo, “Interferometric methods for artwork diagnostics” in Progress in Optics Vol. XXXV, E. Wolf, ed. (Elsevier, 1996).

X. Maldague, Theory and Practice of Infrared Technology for non destructive Testing (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The Planck curve for a blackbody at 293K (roughly room temperature), with the areas to be integrated for MWIR and LWIR sensors shaded.

Fig. 2
Fig. 2

A sketch of the experimental setup, detailing also the typical layered structure of a wall painting.

Fig. 3
Fig. 3

Part of the fresco by the Zavattaris in the Theodelinda’s Chapel. The artworks, executed between 1440 and 1446 are extremely rich and complex, featuring different fresco techniques, gold and silver decorations and reliefs. Color photography (a), and imaging in the NIR (b), compared to the TQR image (c).

Fig. 4
Fig. 4

“The Resurrection” by Piero della Francesca, circa 1460 (detail): color photography.

Fig. 5
Fig. 5

“The Resurrection” by Piero della Francesca (detail): NIR image (left) and TQR image (right). A Original area; B and C painted integration; D Restoration plaster; E Green Earth pigment; F and G pigments with similar behavior in the visible and different reflectivity in MWIR.

Fig. 6
Fig. 6

“The Resurrection” by Piero della Francesca (detail): NIR image (left) and TQR image (right). A retouches; B inhomogeneities on the shield; C Different execution techniques on the soldier’s sword, not detected in NIR; D better differentiation of the background in MWIR; E different reflectance NIR MWIR.

Fig. 7
Fig. 7

A fresco model, copied from Ghirlandaio, realized around 1930 by the restorer Benini. Color photography (a); CMOS NIR photography (0.9 – 1.1 μm) (b); IR scanner at 1.82 μm (c) and TQR image (mosaic of two views) (d).

Metrics