Abstract

A proof-of-concept for a new and entirely CMOS compatible thermo-optic reconfigurable switch based on a coupled ring resonator structure is experimentally demonstrated in this paper. Preliminary results show that a single optical device is capable of combining several functionalities, such as tunable filtering, non-blocking switching and reconfigurability, in a single device with compact footprint (~50μm x 30μm).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and G. Guillot, Optical Interconnects - The Silicon Approach (Springer-Verlag, 2006).
  2. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  3. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23(8), 2455–2461 (2005).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  5. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
    [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  7. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [CrossRef] [PubMed]
  8. P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012).
    [CrossRef]
  9. W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
    [CrossRef] [PubMed]
  10. R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
    [CrossRef] [PubMed]
  11. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [CrossRef] [PubMed]
  12. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
    [CrossRef] [PubMed]
  13. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
    [CrossRef] [PubMed]
  14. E. J. Klein, “Densely integrated microringresonator based components for fiber-to-the-home applications,” Ph.D. thesis, University of Twente (2007). doc.utwente.nl/60711/1/thesis_E_J_Klein.pdf .
  15. H. L. R. Lira, C. B. Poitras, and M. Lipson, “CMOS compatible reconfigurable filter for high bandwidth non-blocking operation,” Opt. Express 19(21), 20115–20121 (2011).
    [CrossRef] [PubMed]
  16. W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett. 53(10), 2375–2378 (2011).
    [CrossRef]
  17. O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun. 271(2), 424–429 (2007).
    [CrossRef]
  18. S. Darmawan and M. K. Chin, “Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator system,” J. Opt. Soc. Am. B 23(5), 834–841 (2006).
    [CrossRef]
  19. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982).
    [CrossRef] [PubMed]
  20. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
    [CrossRef] [PubMed]

2012 (1)

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012).
[CrossRef]

2011 (5)

2010 (4)

2009 (1)

2007 (1)

O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun. 271(2), 424–429 (2007).
[CrossRef]

2006 (1)

2005 (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23(8), 2455–2461 (2005).
[CrossRef]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2003 (1)

1982 (1)

Adibi, A.

Almeida, V. R.

W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett. 53(10), 2375–2378 (2011).
[CrossRef]

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Asghari, M.

Atabaki, A. H.

Bååk, T.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bienstman, P.

Boeck, R.

Bogaerts, W.

Chin, M. K.

Chrostowski, L.

Claes, T.

Cunningham, J. E.

Darmawan, S.

Dong, P.

Eftekhar, A. A.

Fedeli, J.-M.

Fegadolli, W. S.

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett. 53(10), 2375–2378 (2011).
[CrossRef]

Feng, D.

Fournier, M.

Gardes, F. Y.

Grosse, P.

Hu, Y.

Huijuan, Z.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012).
[CrossRef]

Jaeger, N. A.

Jing, Z.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012).
[CrossRef]

Kimerling, L. C.

Krishnamoorthy, A. V.

Li, G.

Liang, H.

Lipson, M.

Lira, H. L. R.

Manipatruni, S.

Mashanovich, G.

Murukeshan, V. M.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012).
[CrossRef]

Oliveira, J. E. B.

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett. 53(10), 2375–2378 (2011).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Poitras, C. B.

Prabhathan, P.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Qian, W.

Reed, G. T.

Rouger, N.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schwelb, O.

O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun. 271(2), 424–429 (2007).
[CrossRef]

Shafiiha, R.

Shah Hosseini, E.

Shiyi, C.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012).
[CrossRef]

Sparacin, D. K.

Spector, S. J.

Thomson, D. J.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yegnanarayanan, S.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength Tunable Thermo-Optic WSS for Low Power Consumption C + L Band Tunability,” IEEE Photon. Technol. Lett. 24(2), 152–154 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett. 53(10), 2375–2378 (2011).
[CrossRef]

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun. 271(2), 424–429 (2007).
[CrossRef]

Opt. Express (8)

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef] [PubMed]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[CrossRef] [PubMed]

R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

H. L. R. Lira, C. B. Poitras, and M. Lipson, “CMOS compatible reconfigurable filter for high bandwidth non-blocking operation,” Opt. Express 19(21), 20115–20121 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

E. J. Klein, “Densely integrated microringresonator based components for fiber-to-the-home applications,” Ph.D. thesis, University of Twente (2007). doc.utwente.nl/60711/1/thesis_E_J_Klein.pdf .

L. Pavesi and G. Guillot, Optical Interconnects - The Silicon Approach (Springer-Verlag, 2006).

Supplementary Material (2)

» Media 1: MOV (1577 KB)     
» Media 2: MOV (2496 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the device.

Fig. 2
Fig. 2

(a) Device’s photograph took from optical microscope; (b) Device’s micrograph took from SEM.

Fig. 3
Fig. 3

(a) Theoretical and measured drop/through port optical response when no current is applied on the micro-heaters; (b) individual theoretical optical response of each ring resonator for the behavior observed in (a). (c) Theoretical and measured drop/ through port optical response for 8mA applied on the micro-heater on the major ring resonator. (d) Individual theoretical optical response of each ring resonator under the condition observed in (c). In (b) and (d), the dashed (solid) lines correspond to the optical response for the major (minor) ring resonators, respectively.

Fig. 4
Fig. 4

(a) and (b) show the extracted behavior of the electric field transmission coefficient as a function of wavelength for gaps of, respectively, 200nm and 500nm; (c) extracted behavior of the effective index of refraction for bent ring waveguides as a function of wavelength, and (d) extracted behavior of the power loss coefficient as a function of wavelength for the bent ring waveguides.

Fig. 5
Fig. 5

(a) Theoretical effective index of refraction for a straight waveguide as a function of temperature and wavelength; (b) waveguide sensitivity for three distinct wavelength of interest.

Fig. 6
Fig. 6

(a) Extracted behavior of the effective index of refraction as a function of electrical current based on fitting on experimental measurements (Media 1 and Media 2); (b) effective index of refraction variation as a function of temperature variation for 1550nm.

Fig. 7
Fig. 7

General theoretical thermal mode behavior provided by NiCr heaters under following conditions: (a) waveguide cross section with micro heater on top, (b) top view when just the major heater is submitted to electrical current, (c) top view when both heaters are submitted to the same electrical current amplitude. (d) waveguide cross section of the coupling region between ring resonators when the major ring is submitted to electrical current and (e) when both are submitted to the same electrical current amplitude.

Fig. 8
Fig. 8

(a) Measured device’s optical response (drop port) as a function of wavelength and electrical current applied on the major micro-heater. See Media 1 to see theoretical behavior for through and drop port as a function of the change of effective index of refraction (Media 1), (b) extracted behavior for each resonance peak shift as a function of electrical current.

Fig. 9
Fig. 9

(a) Measured device’s optical response (drop port) as a function of wavelength and electrical current applied on both micro-heaters. See Media 2 to see theoretical behavior for through and drop port as a function of the change of effective index of refraction (Media 2), (b) extracted behavior for each resonance shift as a function of electrical current.

Tables (1)

Tables Icon

Table 1 Designed parameters for the fabricated device:

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ E 1 E 2 E 3 E 4 E A E B E C E D E E E F E G E H ]=[ 0 0 τ 1 0 j κ 1 0 0 0 0 0 0 0 0 0 0 τ 3 0 0 0 0 0 j κ 3 0 0 τ 1 0 0 0 0 0 0 j κ 1 0 0 0 0 0 τ 3 0 0 0 0 0 0 0 0 j κ 3 0 j κ 1 0 0 0 0 0 0 τ 1 0 0 0 0 0 0 0 0 0 0 τ 2 0 0 0 0 j κ 2 0 0 0 0 0 τ 2 0 0 j κ 2 0 0 0 0 0 j κ 1 0 τ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 j κ 2 0 0 0 0 τ 2 0 j κ 3 0 0 0 0 0 0 0 0 τ 3 0 0 0 0 j κ 3 0 0 0 0 0 τ 3 0 0 0 0 0 0 0 j κ 2 0 0 τ 2 0 0 0 ].[ E 1 + E 2 + E 3 + E 4 + E A + E B + E C + E D + E E + E F + E G + E H + ].
[ E 1 + E 2 + E 3 + E 4 + E A + E B + E C + E D + E E + E F + E G + E H + ]=[ E in 0 0 0 0 E A e j ϕ 1 /2 0 E C e j ϕ 1 /2 E F e j ϕ 2 /2 0 E H e j ϕ 2 /2 0 ].
[ E 3 E 4 E A E C E F E H ]=[ τ 1 0 j κ 1 0 0 0 0 0 0 0 j κ 3 τ 3 j κ 1 0 τ 1 0 0 0 0 τ 2 0 j κ 2 0 0 0 0 0 0 τ 3 j κ 3 0 j κ 2 0 τ 2 0 0 ][ E in E A e j ϕ 1 /2 E C e j ϕ 1 /2 E F e j ϕ 2 /2 E H e j ϕ 2 /2 0 ],
ϕ 1 = 2π λ 0 n eff ( 2π R 1 ), ϕ 2 = 2π λ 0 n eff ( 2π R 2 ),

Metrics