Abstract

Room temperature light emission from Ge self-assembled quantum dots (QDs) embedded in L3-type photonic crystal (PhC) nanocavity is successfully demonstrated under current injection through a lateral PIN diode structure. The Ge QDs are grown on silicon-on-insulator (SOI) wafer by solid-source molecular beam epitaxy (SS-MBE), and the PIN diode is fabricated by selective ion implantation around the PhC cavity. Under an injected current larger than 0.5 mA, strong resonant electroluminescence (EL) around 1.3–1.5 μm wavelength corresponding to the PhC cavity modes is observed. A sharp peak with a quality factor up to 260 is obtained in the EL spectrum. These results show a possible way to realize practical silicon-based light emitting devices.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. ReedSilicon Photonics: The State of the Art (J. Wiley & Sons, 2008).
  2. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa“Silicon Photonics: CMOS Going Optical,” Proc. IEEE 97, 1161–1165 (2009).
    [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London) 408, 440–444 (2000).
    [CrossRef]
  4. D. K. Nayak, N. Usami, S. Fukatsu, and Y. Shiraki, “Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si (100),” Appl. Phys. Lett. 63, 3509–3511 (1993).
    [CrossRef]
  5. R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
    [CrossRef]
  6. H.-S. Han, S.-Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
    [CrossRef]
  7. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
    [CrossRef]
  8. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71, 258–260 (1997).
    [CrossRef]
  9. T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
    [CrossRef]
  10. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  11. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
    [CrossRef]
  12. J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91, 011104 (2007).
    [CrossRef]
  13. M. E. Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 207–210 (2008).
  14. J. Xia, Y. Takeda, N. Usami, and T. Maruizumi, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
    [CrossRef] [PubMed]
  15. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
    [CrossRef] [PubMed]
  16. T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
    [CrossRef]
  17. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
    [CrossRef]
  18. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
    [CrossRef] [PubMed]
  19. J. ZieglerSRIM The Stopping and Range of Ions in Matter, Version 2008.03, http://www.srim.org .
  20. A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
    [CrossRef]
  21. RSoft FullWAVE, RSoft Design Group, Inc., http://www.rsoftdesign.com .
  22. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
    [CrossRef]
  23. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91, 211104 (2007).
    [CrossRef]
  24. S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on the photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 171102 (2011).
    [CrossRef]
  25. N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
    [CrossRef]
  26. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
    [CrossRef]
  27. S. Cheng, J. Lu, G. Shambat, H. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009).
    [CrossRef] [PubMed]
  28. M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
    [CrossRef]

2012 (2)

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[CrossRef] [PubMed]

2011 (2)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on the photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 171102 (2011).
[CrossRef]

2010 (2)

N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[CrossRef]

J. Xia, Y. Takeda, N. Usami, and T. Maruizumi, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (2)

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91, 211104 (2007).
[CrossRef]

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91, 011104 (2007).
[CrossRef]

2006 (3)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

2005 (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

2004 (2)

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

2002 (1)

A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
[CrossRef]

2001 (1)

H.-S. Han, S.-Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[CrossRef]

2000 (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London) 408, 440–444 (2000).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

1997 (1)

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71, 258–260 (1997).
[CrossRef]

1995 (1)

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

1993 (1)

D. K. Nayak, N. Usami, S. Fukatsu, and Y. Shiraki, “Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si (100),” Appl. Phys. Lett. 63, 3509–3511 (1993).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Aniel, F.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Apetz, R.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Arakawa, Y.

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on the photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 171102 (2011).
[CrossRef]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91, 211104 (2007).
[CrossRef]

Asano, T.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Bensahel, D.

M. E. Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 207–210 (2008).

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Boucaud, P.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Brunhes, T.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Campidelli, Y.

M. E. Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 207–210 (2008).

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Checoury, X.

Cheng, S.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Colman, P.

N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[CrossRef]

Combrie, S.

N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London) 408, 440–444 (2000).
[CrossRef]

David, S.

M. E. Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 207–210 (2008).

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

Dieker, C.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

El Kurdi, M.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

Elliot, K.

A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
[CrossRef]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Faini, G.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London) 408, 440–444 (2000).
[CrossRef]

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

Fukatsu, S.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71, 258–260 (1997).
[CrossRef]

D. K. Nayak, N. Usami, S. Fukatsu, and Y. Shiraki, “Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si (100),” Appl. Phys. Lett. 63, 3509–3511 (1993).
[CrossRef]

Gomyo, A.

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91, 211104 (2007).
[CrossRef]

Griffin, P. B.

A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
[CrossRef]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Han, H.-S.

H.-S. Han, S.-Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[CrossRef]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Hartmann, A.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Hasebe, K.

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Hemandez, C.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Ichikawa, M.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa“Silicon Photonics: CMOS Going Optical,” Proc. IEEE 97, 1161–1165 (2009).
[CrossRef]

Ikegami, Y.

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91, 011104 (2007).
[CrossRef]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

Ishida, S.

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on the photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 171102 (2011).
[CrossRef]

Iwamoto, S.

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on the photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 171102 (2011).
[CrossRef]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91, 211104 (2007).
[CrossRef]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Kakitsuka, T.

Kammerer, C.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

Kermarrec, O.

M. E. Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 207–210 (2008).

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Komiyama, S.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71, 258–260 (1997).
[CrossRef]

Kurdi, M. E.

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Le Thanh, V.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

Li, X.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Lockwood, D. J.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa“Silicon Photonics: CMOS Going Optical,” Proc. IEEE 97, 1161–1165 (2009).
[CrossRef]

Lourtioz, J.-M.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Lu, J.

Luth, H.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

Maruizumi, T.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
[CrossRef]

J. Xia, Y. Takeda, N. Usami, and T. Maruizumi, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[CrossRef] [PubMed]

Matsuo, S.

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London) 408, 440–444 (2000).
[CrossRef]

McCoy, S.

A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
[CrossRef]

Mei, T.

N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[CrossRef]

Mokhberi, A.

A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
[CrossRef]

Nakata, Y.

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

Nakayama, S.

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on the photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 171102 (2011).
[CrossRef]

Nayak, D. K.

D. K. Nayak, N. Usami, S. Fukatsu, and Y. Shiraki, “Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si (100),” Appl. Phys. Lett. 63, 3509–3511 (1993).
[CrossRef]

Nemoto, K.

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91, 011104 (2007).
[CrossRef]

Ngo, T. P.

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Nishi, Y.

Noda, S.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Notomi, M.

Nozaki, K.

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Paton, E.

A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London) 408, 440–444 (2000).
[CrossRef]

Plummer, J. D.

A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London) 408, 440–444 (2000).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Reed, G. T.

G. T. ReedSilicon Photonics: The State of the Art (J. Wiley & Sons, 2008).

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Rossi, A. D.

N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[CrossRef]

Sagnes, I.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Saraswat, K.

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Sato, T.

Sauvage, S.

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

Seo, S.-Y.

H.-S. Han, S.-Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[CrossRef]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

S. Cheng, J. Lu, G. Shambat, H. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009).
[CrossRef] [PubMed]

Shin, J. H.

H.-S. Han, S.-Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[CrossRef]

Shinya, A.

Shiraki, Y.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
[CrossRef]

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91, 011104 (2007).
[CrossRef]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71, 258–260 (1997).
[CrossRef]

D. K. Nayak, N. Usami, S. Fukatsu, and Y. Shiraki, “Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si (100),” Appl. Phys. Lett. 63, 3509–3511 (1993).
[CrossRef]

Sunamura, H.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71, 258–260 (1997).
[CrossRef]

Takeda, K.

Takeda, Y.

Tanaka, Y.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Taniyama, H.

Tran, N.

N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[CrossRef]

Tsuboi, T.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
[CrossRef]

Tsybeskov, L.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa“Silicon Photonics: CMOS Going Optical,” Proc. IEEE 97, 1161–1165 (2009).
[CrossRef]

Usami, N.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
[CrossRef]

J. Xia, Y. Takeda, N. Usami, and T. Maruizumi, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[CrossRef] [PubMed]

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91, 011104 (2007).
[CrossRef]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

D. K. Nayak, N. Usami, S. Fukatsu, and Y. Shiraki, “Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si (100),” Appl. Phys. Lett. 63, 3509–3511 (1993).
[CrossRef]

Vescan, L.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

S. Cheng, J. Lu, G. Shambat, H. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009).
[CrossRef] [PubMed]

Xia, J.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
[CrossRef]

J. Xia, Y. Takeda, N. Usami, and T. Maruizumi, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[CrossRef] [PubMed]

Xia, J. S.

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91, 011104 (2007).
[CrossRef]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

Xu, X.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
[CrossRef]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Yu, H.

Zerounian, N.

Appl. Phys. Express (1)

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express 5, 052101 (2012).
[CrossRef]

Appl. Phys. Lett. (10)

D. K. Nayak, N. Usami, S. Fukatsu, and Y. Shiraki, “Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si (100),” Appl. Phys. Lett. 63, 3509–3511 (1993).
[CrossRef]

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

H.-S. Han, S.-Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[CrossRef]

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71, 258–260 (1997).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77, 1822–1824 (2000).
[CrossRef]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91, 011104 (2007).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91, 211104 (2007).
[CrossRef]

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on the photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 171102 (2011).
[CrossRef]

IEEE Trans. Electron Dev. (1)

A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev. 49, 1183–1191 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997–1000 (2004).
[CrossRef]

Nat. Photon. (1)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[CrossRef]

Nature (London) (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London) 408, 440–444 (2000).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London) 433, 292–294 (2005).
[CrossRef]

Opt. Express (4)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[CrossRef]

Proc. IEEE (1)

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa“Silicon Photonics: CMOS Going Optical,” Proc. IEEE 97, 1161–1165 (2009).
[CrossRef]

Proc. SPIE (1)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

Science (1)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Other (3)

RSoft FullWAVE, RSoft Design Group, Inc., http://www.rsoftdesign.com .

J. ZieglerSRIM The Stopping and Range of Ions in Matter, Version 2008.03, http://www.srim.org .

G. T. ReedSilicon Photonics: The State of the Art (J. Wiley & Sons, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics