Abstract

Thin Au films (~5nm) are known to form island-like structures with small gaps between the islands, which produce intense electric field “hot spots” under visible illumination. In this work, we perform finite difference time domain (FDTD) simulations based on experimentally observed high resolution transmission electron microscope (HRTEM) images of these films in order to study the nature of the “hot spots” in more detail. Specifically, we study the dependence of the electric field intensity in the hot spots on the surrounding film environment and on the size of the nanogaps. From our simulations, we show that the surrounding film contributes significantly to the electric field intensity at the hot spot by focusing energy to it. Widening of the gap size causes a decrease in the intensity at the hot spot. However, these island-like nanoparticle hot spots are far less sensitive to gap size than nanoparticle dimer geometries, studied previously. In fact, the main factor in determining the hot spot intensity is the focusing effect of the surrounding nano-islands. We show that these random Au island films outperform more sophisticated geometries of spherical nanoparticle clusters that have been optimized using an iterative optimization algorithm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
    [CrossRef] [PubMed]
  2. P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
    [CrossRef]
  3. W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
    [CrossRef]
  4. W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal. 277(2), 149–153 (2011).
    [CrossRef]
  5. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
    [CrossRef] [PubMed]
  6. G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B 104(34), 8238–8244 (2000).
    [CrossRef]
  7. G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chemistry 8(17), 3849–3857 (2002).
    [CrossRef] [PubMed]
  8. I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, “Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 126(49), 15950–15951 (2004).
    [CrossRef] [PubMed]
  9. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101 (1993).
    [CrossRef]
  10. P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B Condens. Matter 35(8), 3753–3759 (1987).
    [CrossRef] [PubMed]
  11. F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
    [CrossRef]
  12. F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B 581, 1411451–1415903 (1998).
  13. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
    [CrossRef]
  14. S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
    [CrossRef]
  15. S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
    [CrossRef]
  16. J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
    [CrossRef] [PubMed]
  17. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  18. C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
    [CrossRef] [PubMed]
  19. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
    [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational electrodynamics (Artech House, 1995).
  21. E. D. Palik and G. Ghosh, Handbook of optical constants of solids (Academic Press, 1998).
  22. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
    [CrossRef]
  23. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [CrossRef]
  24. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
    [CrossRef]
  25. P. Pavaskar and S. B. Cronin, “Iterative optimization of plasmon resonant nanostructures,” Appl. Phys. Lett. 94(25), 253102 (2009).
    [CrossRef]

2011 (3)

W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
[CrossRef]

W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal. 277(2), 149–153 (2011).
[CrossRef]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

2010 (2)

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

P. Pavaskar and S. B. Cronin, “Iterative optimization of plasmon resonant nanostructures,” Appl. Phys. Lett. 94(25), 253102 (2009).
[CrossRef]

2005 (2)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, “Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 126(49), 15950–15951 (2004).
[CrossRef] [PubMed]

2003 (1)

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

2002 (1)

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chemistry 8(17), 3849–3857 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

2000 (3)

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B 104(34), 8238–8244 (2000).
[CrossRef]

1999 (1)

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

1998 (1)

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B 581, 1411451–1415903 (1998).

1997 (1)

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
[CrossRef]

1993 (1)

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101 (1993).
[CrossRef]

1987 (1)

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B Condens. Matter 35(8), 3753–3759 (1987).
[CrossRef] [PubMed]

Aigouy, L.

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Ashkenasy, G.

G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B 104(34), 8238–8244 (2000).
[CrossRef]

Atay, T.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Aykol, M.

W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
[CrossRef]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Banerjee, K.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Berini, B.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Blacher, S.

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B 581, 1411451–1415903 (1998).

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
[CrossRef]

Boccara, A. C.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

Bragg, W. D.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Brouers, F.

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B 581, 1411451–1415903 (1998).

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
[CrossRef]

Brown, S. D. M.

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Buil, S.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Chettiar, U. K.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Corio, P.

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

Cronin, S. B.

W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
[CrossRef]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal. 277(2), 149–153 (2011).
[CrossRef]

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[CrossRef] [PubMed]

P. Pavaskar and S. B. Cronin, “Iterative optimization of plasmon resonant nanostructures,” Appl. Phys. Lett. 94(25), 253102 (2009).
[CrossRef]

Danckwerts, M.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

De Abajo, F. J. G.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Desmarest, C.

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

Drachev, V.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Drachev, V. P.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Dresselhaus, G.

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

Dresselhaus, M. S.

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

Ducourtieux, S.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Echternach, P. M.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[CrossRef] [PubMed]

Fendler, J. H.

I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, “Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 126(49), 15950–15951 (2004).
[CrossRef] [PubMed]

Ferrell, T. L.

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B Condens. Matter 35(8), 3753–3759 (1987).
[CrossRef] [PubMed]

Gadenne, P.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
[CrossRef]

Goeppert, A.

W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
[CrossRef]

Goudonnet, J. P.

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B Condens. Matter 35(8), 3753–3759 (1987).
[CrossRef] [PubMed]

Gresillon, S.

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

Grésillon, S.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Hanlon, E. B.

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Hou, W.

W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
[CrossRef]

W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal. 277(2), 149–153 (2011).
[CrossRef]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Hulteen, J. C.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101 (1993).
[CrossRef]

Hung, W. H.

W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal. 277(2), 149–153 (2011).
[CrossRef]

W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
[CrossRef]

Hutter, E.

I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, “Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 126(49), 15950–15951 (2004).
[CrossRef] [PubMed]

Kalyuzhny, G.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chemistry 8(17), 3849–3857 (2002).
[CrossRef] [PubMed]

G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B 104(34), 8238–8244 (2000).
[CrossRef]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Kildishev, A. V.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

Lagarkov, A. N.

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
[CrossRef]

Liu, Z.

W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal. 277(2), 149–153 (2011).
[CrossRef]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Marucci, A.

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

Minko, S.

I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, “Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 126(49), 15950–15951 (2004).
[CrossRef] [PubMed]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Motz, J.

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

Muller, R. E.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[CrossRef] [PubMed]

Nordlander, P.

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[CrossRef] [PubMed]

Novotny, L.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

Nurmikko, A. V.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Nyga, P.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Oubre, C.

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[CrossRef] [PubMed]

Palomba, S.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

Pavaskar, P.

W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
[CrossRef]

W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal. 277(2), 149–153 (2011).
[CrossRef]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[CrossRef] [PubMed]

P. Pavaskar and S. B. Cronin, “Iterative optimization of plasmon resonant nanostructures,” Appl. Phys. Lett. 94(25), 253102 (2009).
[CrossRef]

Perelman, L. T.

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

Pimenta, M. A.

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

Podolskiy, V. A.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Quelin, X.

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Rivoal, J. C.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

Royer, P.

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B Condens. Matter 35(8), 3753–3759 (1987).
[CrossRef] [PubMed]

Rubinstein, I.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chemistry 8(17), 3849–3857 (2002).
[CrossRef] [PubMed]

G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B 104(34), 8238–8244 (2000).
[CrossRef]

Safonov, V.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Sarychev, A.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Sarychev, A. K.

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B 581, 1411451–1415903 (1998).

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
[CrossRef]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Schneeweiss, M. A.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chemistry 8(17), 3849–3857 (2002).
[CrossRef] [PubMed]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Shafer, K.

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

Shalaev, V.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Shalaev, V. M.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
[CrossRef]

Shanzer, A.

G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B 104(34), 8238–8244 (2000).
[CrossRef]

Shubin, V. A.

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Song, J. H.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Theiss, J.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[CrossRef] [PubMed]

Thoreson, M. D.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Tokareva, I.

I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, “Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 126(49), 15950–15951 (2004).
[CrossRef] [PubMed]

Treichel, D. A.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101 (1993).
[CrossRef]

Van Duyne, R. P.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101 (1993).
[CrossRef]

Vaskevich, A.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chemistry 8(17), 3849–3857 (2002).
[CrossRef] [PubMed]

G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B 104(34), 8238–8244 (2000).
[CrossRef]

Warmack, R. J.

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B Condens. Matter 35(8), 3753–3759 (1987).
[CrossRef] [PubMed]

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Ying, Z.

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

Zhang, X.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Appl. Phys. B (1)

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

P. Pavaskar and S. B. Cronin, “Iterative optimization of plasmon resonant nanostructures,” Appl. Phys. Lett. 94(25), 253102 (2009).
[CrossRef]

Chemistry (1)

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chemistry 8(17), 3849–3857 (2002).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, “Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 126(49), 15950–15951 (2004).
[CrossRef] [PubMed]

W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc. 1(8), 929–936 (2011).
[CrossRef]

J. Catal. (1)

W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal. 277(2), 149–153 (2011).
[CrossRef]

J. Chem. Phys. (2)

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101 (1993).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[CrossRef]

J. Phys. Chem. B (2)

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[CrossRef] [PubMed]

G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B 104(34), 8238–8244 (2000).
[CrossRef]

Nano Lett. (4)

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[CrossRef] [PubMed]

Phys. Rev. B (5)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B 61(19), 13202–13211 (2000).
[CrossRef]

S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[CrossRef]

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 13234–13245 (1997).
[CrossRef]

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B 581, 1411451–1415903 (1998).

Phys. Rev. B Condens. Matter (1)

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B Condens. Matter 35(8), 3753–3759 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84(15), 3470–3473 (2000).
[CrossRef] [PubMed]

S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[CrossRef]

Other (2)

A. Taflove and S. C. Hagness, Computational electrodynamics (Artech House, 1995).

E. D. Palik and G. Ghosh, Handbook of optical constants of solids (Academic Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) HRTEM micrograph and (b) electric field profile of the region surrounding a hot spot on a 5nm Au island film. The black squares of area (d x d) in (a) correspond to the different film areas used in the simulations shown in (c). (c) Electric field intensity at the hot spot plotted as a function of area (d x d).

Fig. 2
Fig. 2

Electric field intensity profiles corresponding to the areas highlighted in Fig. 1(c).

Fig. 3
Fig. 3

(a) Electric field intensity profile of a region with 3 hot spots labeled HS0, HS1 and HS2. (b) Electric field intensities of HS0, HS1 and HS2 plotted as a function of the HS0 gap size.

Fig. 4
Fig. 4

Electric field intensity profile for an optimized cluster of 20 nanoparticles.

Metrics