Abstract

We propose a simple and cost-effective scheme to integrate a wavelength division multiplexed-passive optical network (WDM-PON) with a 60-GHz radio-over-fiber (RoF) system. In optical line terminal/central station (OLT/CS), 10-GHz electronic devices and single-drive Mach-Zehnder modulators (MZMs) are used to generate 60-GHz wireless signals based on frequency-sextupling and optical carrier suppression-differential phase shift keying (OCS-DPSK) modulation. By designing a new architecture, only N + 1 single-drive MZMs are required for an N-channel WDM-PON-RoF converged system. The proposed scheme is experimentally demonstrated with 1.25-Gb/s independent wired, wireless and upstream data. Error-free performances are achieved for all these signals after transmission of 25-km single mode fiber (SMF).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
    [CrossRef]
  2. A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
    [CrossRef]
  3. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-Wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
    [CrossRef]
  4. J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
    [CrossRef]
  5. W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “WDM-RoF-PON architecture for flexible wireless and wire-Line layout,” J. Opt. Commun. Netw. 2(2), 117–121 (2010).
    [CrossRef]
  6. W. Jiang, C. Lin, P. Shih, L. Ying, and S. Chi, “Simultaneous generation and transmission of 60-GHz Wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett. 22(15), 1099–1101 (2010).
    [CrossRef]
  7. Z. Jia, J. Yu, G. Ellinas, and G.-K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
    [CrossRef]
  8. A. Chowdhury, J. Yu, H.-C. Chien, M.-F. Huang, T. Wang, and G.-K. Chang, “Spectrally efficient simultaneous delivery of 112Gbps baseband wireline and 60 GHz MM-Wave carrying 10Gbps optical wireless signal in radio-over-fiber WDM-PON access systems,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (IEEE, 2007,), paper 4.5.1.
  9. H. C. Chien, A. Chowdhury, Y. T. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, “A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuB7.
  10. A. Stöhr, A. Akrout, R. Buß, B. Charbonnier, F. van Dijk, A. Enard, S. Fedderwitz, D. Jäger, M. Huchard, F. Lecoche, J. Marti, R. Sambaraju, A. Steffan, A. Umbach, and M. Weiß, “60 GHz radio-over-fiber technologies for broadband wireless services,” J. Opt. Netw. 8(5), 471–487 (2009).
    [CrossRef]
  11. L. Zhang, X. Hu, P. Cao, and Y. Su, “A 60-GHz RoF system in WDM-PON with reduced number of modulators and low-cost electronics,” in 2010 Photonics Global Conference (PGC) (IEEE, 2010), paper conf10a420.
  12. C. H. Yeh and C. W. Chow, “Heterogeneous radio-over-fiber passive access network architecture to mitigate Rayleigh backscattering interferometric beat noise,” Opt. Express 19(7), 5735–5740 (2011).
    [CrossRef] [PubMed]
  13. Q. Chang, T. Ye, J. Gao, and Y. Su, “Generation of 60-GHz optical millimeter-wave and 20-GHz channel-spaced optical multicarrier using two cascade 10-GHz modulators,” in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper SaJ1.
  14. Q. Chang, Y. Tian, J. Gao, T. Ye, Q. Li, and Y. Su, “Generation and transmission of optical carrier suppressed-optical differential (Qudrature) phase-shift keying (OCS-OD(Q)PSK) signals in radio over fiber systems,” J. Lightwave Technol. 26(15), 2611–2618 (2008).
    [CrossRef]
  15. L. Zhang, Y. Wu, X. Hu, T. Wang, P. Cao, and Y. Su, “Simultaneous transmission of three services in a WDM-PON system with wireless access for multicast data,” in 2010 Asia Communications and Photonics Conference and Exhibition (ACP)(2010), pp. 443–444.

2011

2010

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “WDM-RoF-PON architecture for flexible wireless and wire-Line layout,” J. Opt. Commun. Netw. 2(2), 117–121 (2010).
[CrossRef]

W. Jiang, C. Lin, P. Shih, L. Ying, and S. Chi, “Simultaneous generation and transmission of 60-GHz Wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett. 22(15), 1099–1101 (2010).
[CrossRef]

2009

2008

2007

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Z. Jia, J. Yu, G. Ellinas, and G.-K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[CrossRef]

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

2001

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

2000

Akanbi, O.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Akrout, A.

Buß, R.

Chang, G. K.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Chang, G.-K.

Chang, Q.

Charbonnier, B.

Chen, J.

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “WDM-RoF-PON architecture for flexible wireless and wire-Line layout,” J. Opt. Commun. Netw. 2(2), 117–121 (2010).
[CrossRef]

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Chi, S.

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “WDM-RoF-PON architecture for flexible wireless and wire-Line layout,” J. Opt. Commun. Netw. 2(2), 117–121 (2010).
[CrossRef]

W. Jiang, C. Lin, P. Shih, L. Ying, and S. Chi, “Simultaneous generation and transmission of 60-GHz Wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett. 22(15), 1099–1101 (2010).
[CrossRef]

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Chiou, B.

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Chow, C. W.

Ellinas, G.

Enard, A.

Fedderwitz, S.

Gao, J.

Huchard, M.

Jäger, D.

Jia, Z.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Z. Jia, J. Yu, G. Ellinas, and G.-K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[CrossRef]

Jiang, W.

W. Jiang, C. Lin, P. Shih, L. Ying, and S. Chi, “Simultaneous generation and transmission of 60-GHz Wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett. 22(15), 1099–1101 (2010).
[CrossRef]

Jiang, W.-J.

Lecoche, F.

Li, Q.

Lim, C.

Lin, C.

W. Jiang, C. Lin, P. Shih, L. Ying, and S. Chi, “Simultaneous generation and transmission of 60-GHz Wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett. 22(15), 1099–1101 (2010).
[CrossRef]

Lin, C.-T.

Lin, J. C.

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Luo, Y.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Marti, J.

A. Stöhr, A. Akrout, R. Buß, B. Charbonnier, F. van Dijk, A. Enard, S. Fedderwitz, D. Jäger, M. Huchard, F. Lecoche, J. Marti, R. Sambaraju, A. Steffan, A. Umbach, and M. Weiß, “60 GHz radio-over-fiber technologies for broadband wireless services,” J. Opt. Netw. 8(5), 471–487 (2009).
[CrossRef]

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

Martinez, A.

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

Nirmalathas, A.

Novak, D.

Peng, C.

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Peng, P.

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Peng, W.

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Polo, V.

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

Sambaraju, R.

Shih, P.

W. Jiang, C. Lin, P. Shih, L. Ying, and S. Chi, “Simultaneous generation and transmission of 60-GHz Wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett. 22(15), 1099–1101 (2010).
[CrossRef]

Shih, P.-T.

Steffan, A.

Stöhr, A.

Su, Y.

Tian, Y.

Umbach, A.

van Dijk, F.

Wang, T.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Wang He, L.-Y.

Waterhouse, R.

Weiß, M.

Ye, T.

Yeh, C. H.

Ying, L.

W. Jiang, C. Lin, P. Shih, L. Ying, and S. Chi, “Simultaneous generation and transmission of 60-GHz Wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett. 22(15), 1099–1101 (2010).
[CrossRef]

Yoffe, G.

Yu, J.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Z. Jia, J. Yu, G. Ellinas, and G.-K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[CrossRef]

Zong, L.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

W. Jiang, C. Lin, P. Shih, L. Ying, and S. Chi, “Simultaneous generation and transmission of 60-GHz Wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett. 22(15), 1099–1101 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

J. Opt. Netw.

Opt. Express

Other

Q. Chang, T. Ye, J. Gao, and Y. Su, “Generation of 60-GHz optical millimeter-wave and 20-GHz channel-spaced optical multicarrier using two cascade 10-GHz modulators,” in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper SaJ1.

L. Zhang, X. Hu, P. Cao, and Y. Su, “A 60-GHz RoF system in WDM-PON with reduced number of modulators and low-cost electronics,” in 2010 Photonics Global Conference (PGC) (IEEE, 2010), paper conf10a420.

L. Zhang, Y. Wu, X. Hu, T. Wang, P. Cao, and Y. Su, “Simultaneous transmission of three services in a WDM-PON system with wireless access for multicast data,” in 2010 Asia Communications and Photonics Conference and Exhibition (ACP)(2010), pp. 443–444.

A. Chowdhury, J. Yu, H.-C. Chien, M.-F. Huang, T. Wang, and G.-K. Chang, “Spectrally efficient simultaneous delivery of 112Gbps baseband wireline and 60 GHz MM-Wave carrying 10Gbps optical wireless signal in radio-over-fiber WDM-PON access systems,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (IEEE, 2007,), paper 4.5.1.

H. C. Chien, A. Chowdhury, Y. T. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, “A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuB7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of the generation of OCS-DPSK signal with sixfold frequency.

Fig. 2
Fig. 2

Schematic diagram of the integrated WDM-PON-RoF system.

Fig. 3
Fig. 3

Experimental setup of the proposed WDM-PON-RoF converged system. (a)–(h) correspond to the optical spectra shown in the Fig. 4.

Fig. 4
Fig. 4

Optical spectra taken at different positions as indicated in Fig. 3. Spectral resolution: 0.02 nm. (a) Baseband DPSK and 20-GHz OCS-DPSK signals, (b) reflected baseband signals, (c) passing signal from the cascading FBGs, (d) 60-GHz OCS-DPSK signals, (e) baseband DPSK and 60-GHz OCS-DPSK signals, (f) optical signal of channel-1, (g) 60-GHz OCS-DPSK signal of channel-1, (h) baseband signal of channel-1.

Fig. 5
Fig. 5

Measured eye diagrams of downstream and upstream signals after transmission of 25-km SMF (X-axis: 200 ps/div).

Fig. 6
Fig. 6

BER curves of (a) downstream wireless data, (b) downstream wired data, (c) upstream re-modulation data.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E out1 = E 0 cos( ω c t)cos{ π 2 [ ε 1 + α 1 D 1 (t)cos( ω s t)+ α 2 D 2 (t)]}
E out1 = E 0 cos( ω c t)cos{ π 2 + π 2 [ α 1 D 1 (t)cos( ω s t)+ α 2 D 2 (t)]} = E 0 cos( ω c t)sin{ π 2 [ α 1 D 1 (t)cos( ω s t)+ α 2 D 2 (t)]} = E 0 cos( ω c t){sin[ π 2 α 1 D 1 (t)cos( ω s t)]cos[ π 2 α 2 D 2 (t)]+cos[ π 2 α 1 D 1 (t)cos( ω s t)]sin[ π 2 α 2 D 2 (t)]}
E out1 = E 0 cos( ω c t){2cos[ π 2 α 2 D 2 (t)]× n=1 (1) n J (2n1) [ π 2 α 1 D 1 (t)]cos[(2n1) ω s t] +sin[ π 2 α 2 D 2 (t)]×{ J 0 [ π 2 α 1 D 1 (t)]+2 n=1 (1) n J 2n [ π 2 α 1 D 1 (t)]cos(2n ω s t)}}
E out1 =2 E 0 cos[ π 2 α 2 D 2 (t)] J 1 [ π 2 α 1 D 1 (t)]cos( ω c t)cos( ω s t) E 0 sin[ π 2 α 2 D 2 (t)] J 0 [ π 2 α 1 D 1 (t)]cos( ω c t)
E out1 = E 0 cos( π 2 α 2 ) J 1 ( π 2 α 1 ) D 1 (t){cos[( ω c + ω s )t]+cos[( ω c ω s )t]} E 0 sin( π 2 α 2 ) D 2 (t) J 0 ( π 2 α 1 )cos( ω c t) = E 0 cos( π 2 α 2 ) J 1 ( π 2 α 1 ){cos[( ω c + ω s )t+ Φ 1 (t)]+cos[( ω c ω s )t+ Φ 1 (t)]} E 0 sin( π 2 α 2 ) J 0 ( π 2 α 1 )cos[ ω c t+ Φ 2 (t)]}
E out1 { J 1 ( π 2 α 1 )cos[( ω c + ω s )t+ Φ 1 (t)]+ J 1 ( π 2 α 1 )cos[( ω c ω s )t+ Φ 1 (t)]} J 0 ( π 2 α 1 )cos[ ω c t+ Φ 2 (t)]
E out2 = E 0 { J 1 ( π 2 α 1 )cos[( ω c + ω s )t+ Φ 1 (t)]+ J 1 ( π 2 α 1 )cos[( ω c ω s )t+ Φ 1 (t)]}·cos{ π 2 [ ε 2 + α RF2 cos( ω s t+β)]}
E out2 = E 0 J 1 ( π 2 α 1 )·{ J 0 ( π 2 α RF2 )cos[( ω c ω s )t+ Φ 1 (t)] J 2 ( π 2 α RF2 )cos[( ω c ω s )t+ Φ 1 (t)2β]} E 0 J 1 ( π 2 α 1 )·{ J 0 ( π 2 α RF2 )cos[( ω c + ω s )t+ Φ 1 (t)] J 2 ( π 2 α RF2 )cos[( ω c + ω s )t+ Φ 1 (t)+2β]} + E 0 J 1 ( π 2 α 1 )·{( J 2 ( π 2 α RF2 )cos[( ω c +3 ω s )t+ Φ 1 (t)+2β]+ J 2 ( π 2 α RF2 )cos[( ω c 3 ω s )t+ Φ 1 (t)2β]}

Metrics