Abstract

Plasmonic modes supported by noble-metal nanostructures offer strong subwavelength electric-field confinement and promise the realization of nanometer-scale integrated optical circuits with well-defined functionality. In order to measure the spectral and spatial response functions of such plasmonic elements, we combine a confocal microscope setup with spectral interferometry detection. The setup, data acquisition, and data evaluation are discussed in detail by means of exemplary experiments involving propagating plasmons transmitted through silver nanowires. By considering and experimentally calibrating any setup-inherent signal delay with an accuracy of 1 fs, we are able to extract correct timing information of propagating plasmons. The method can be applied, e.g., to determine the dispersion and group velocity of propagating plasmons in nanostructures, and can be extended towards the investigation of nonlinear phenomena.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
    [CrossRef]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  4. P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  5. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
    [CrossRef] [PubMed]
  6. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  8. A. A. Reiserer, J. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18, 11810–11820 (2010).
    [CrossRef] [PubMed]
  9. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
    [CrossRef]
  10. H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
    [CrossRef] [PubMed]
  11. V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
    [CrossRef] [PubMed]
  12. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
    [CrossRef] [PubMed]
  13. M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in Low-Q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
    [CrossRef]
  14. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [CrossRef]
  15. C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
    [CrossRef]
  16. R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: Space-Time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
    [CrossRef] [PubMed]
  17. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082 (2001).
    [CrossRef] [PubMed]
  18. M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
    [CrossRef] [PubMed]
  19. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
    [CrossRef] [PubMed]
  20. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
    [CrossRef] [PubMed]
  21. R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic–plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. USA 106, 21045–21050 (2009).
    [CrossRef] [PubMed]
  22. Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
    [CrossRef] [PubMed]
  23. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  24. C. Dorrer and M. Joffre, “Characterization of the spectral phase of ultrashort light pulses,” C. R. Acad. Sci., Ser. IV: Phys. 2, 1415–1426 (2001).
  25. Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
    [CrossRef]
  26. C. Radzewicz, M. la Grone, and J. Krasinski, “Interferometric measurement of femtosecond pulse distortion by lenses,” Opt. Commun. 126, 185–190 (1996).
    [CrossRef]
  27. C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
    [CrossRef]
  28. C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [CrossRef]
  29. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
    [CrossRef] [PubMed]
  30. J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
  31. P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
    [CrossRef] [PubMed]
  32. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
    [CrossRef] [PubMed]
  33. L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett. 10, 3389–3394 (2010).
    [CrossRef] [PubMed]
  34. M.-T. Cheng, Y.-Q. Luo, P.-Z. Wang, and G.-X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
    [CrossRef]
  35. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).

2012 (1)

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

2011 (2)

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[CrossRef] [PubMed]

2010 (7)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett. 10, 3389–3394 (2010).
[CrossRef] [PubMed]

M.-T. Cheng, Y.-Q. Luo, P.-Z. Wang, and G.-X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

A. A. Reiserer, J. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18, 11810–11820 (2010).
[CrossRef] [PubMed]

2009 (4)

J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009).
[CrossRef] [PubMed]

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic–plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. USA 106, 21045–21050 (2009).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

2008 (2)

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in Low-Q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[CrossRef]

2007 (1)

2006 (5)

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

2005 (3)

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: Space-Time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

2002 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

2001 (2)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082 (2001).
[CrossRef] [PubMed]

C. Dorrer and M. Joffre, “Characterization of the spectral phase of ultrashort light pulses,” C. R. Acad. Sci., Ser. IV: Phys. 2, 1415–1426 (2001).

2000 (1)

1996 (1)

C. Radzewicz, M. la Grone, and J. Krasinski, “Interferometric measurement of femtosecond pulse distortion by lenses,” Opt. Commun. 126, 185–190 (1996).
[CrossRef]

1995 (1)

1988 (1)

Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
[CrossRef]

1954 (1)

J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Allione, M.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in Low-Q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[CrossRef]

Artemyev, M. V.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in Low-Q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[CrossRef]

Attema, I.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Balistreri, M. L. M.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082 (2001).
[CrossRef] [PubMed]

Bao, K.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[CrossRef] [PubMed]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Belabas, N.

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Biagioni, P.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Bor, Z.

Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Brixner, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

A. A. Reiserer, J. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18, 11810–11820 (2010).
[CrossRef] [PubMed]

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Cao, L.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett. 10, 3389–3394 (2010).
[CrossRef] [PubMed]

Cerjak, I.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Cheng, M.-T.

M.-T. Cheng, Y.-Q. Luo, P.-Z. Wang, and G.-X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

Chériaux, G.

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Cunovic, S.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

de Abajo, F. J. G.

Dekker, H.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

Devaux, E.

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Dimler, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Dintinger, J.

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Dorrer, C.

C. Dorrer and M. Joffre, “Characterization of the spectral phase of ultrashort light pulses,” C. R. Acad. Sci., Ser. IV: Phys. 2, 1415–1426 (2001).

C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
[CrossRef]

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Eisler, H.

P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Engelen, R. J. P.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

Fainman, Y.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: Space-Time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Fang, Y.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[CrossRef] [PubMed]

Fedutik, Y.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in Low-Q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[CrossRef]

Feichtner, T.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Fischer, A.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Geisler, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

Gersen, H.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082 (2001).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Gray, S. K.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett. 10, 3389–3394 (2010).
[CrossRef] [PubMed]

Halas, N. J.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

Hecht, B.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

A. A. Reiserer, J. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18, 11810–11820 (2010).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Huang, J.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

A. A. Reiserer, J. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18, 11810–11820 (2010).
[CrossRef] [PubMed]

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic–plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. USA 106, 21045–21050 (2009).
[CrossRef] [PubMed]

Huang, J.-S.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).

Huang, Y.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[CrossRef] [PubMed]

Joffre, M.

Kall, M.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[CrossRef] [PubMed]

Keitzl, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

Kihm, J.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Kim, D.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Kim, J.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Korterik, J. P.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082 (2001).
[CrossRef] [PubMed]

Krasinski, J.

C. Radzewicz, M. la Grone, and J. Krasinski, “Interferometric measurement of femtosecond pulse distortion by lenses,” Opt. Commun. 126, 185–190 (1996).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Kuipers, L.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082 (2001).
[CrossRef] [PubMed]

la Grone, M.

C. Radzewicz, M. la Grone, and J. Krasinski, “Interferometric measurement of femtosecond pulse distortion by lenses,” Opt. Commun. 126, 185–190 (1996).
[CrossRef]

Laluet, J.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lee, K.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Lepetit, L.

Li, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Likforman, J.

Liu, N.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Luo, Y.-Q.

M.-T. Cheng, Y.-Q. Luo, P.-Z. Wang, and G.-X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Montgomery, J. M.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett. 10, 3389–3394 (2010).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).

Müller, R.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Nome, R. A.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett. 10, 3389–3394 (2010).
[CrossRef] [PubMed]

Nordlander, P.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Park, D.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Park, Q.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Pausauskie, P.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic–plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. USA 106, 21045–21050 (2009).
[CrossRef] [PubMed]

Peschel, U.

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Radzewicz, C.

C. Radzewicz, M. la Grone, and J. Krasinski, “Interferometric measurement of femtosecond pulse distortion by lenses,” Opt. Commun. 126, 185–190 (1996).
[CrossRef]

Razinskas, G.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[CrossRef] [PubMed]

Reiserer, A. A.

Rewitz, C.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Rokitski, R.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: Space-Time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

Romanov, S.

Ropers, C.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[CrossRef] [PubMed]

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[CrossRef] [PubMed]

Sandtke, M.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

Scherer, N. F.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett. 10, 3389–3394 (2010).
[CrossRef] [PubMed]

Schneider, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Schoenmaker, H.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Segerink, B.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Steinmeyer, G.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Stibenz, G.

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Stockman, M. I.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Strüber, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Temnov, V. V.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in Low-Q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[CrossRef]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
[CrossRef] [PubMed]

Tetz, K. A.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: Space-Time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Tuchscherer, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).

van Hulst, N. F.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082 (2001).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Voronine, D. V.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Wang, P.-Z.

M.-T. Cheng, Y.-Q. Luo, P.-Z. Wang, and G.-X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Wei, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[CrossRef] [PubMed]

Wen, J.

Wiley, B. J.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[CrossRef] [PubMed]

Woggon, U.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in Low-Q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[CrossRef]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
[CrossRef] [PubMed]

Xia, Y.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[CrossRef] [PubMed]

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[CrossRef] [PubMed]

Yan, R.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic–plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. USA 106, 21045–21050 (2009).
[CrossRef] [PubMed]

Yang, P.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic–plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. USA 106, 21045–21050 (2009).
[CrossRef] [PubMed]

Zhang, S.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

Zhao, G.-X.

M.-T. Cheng, Y.-Q. Luo, P.-Z. Wang, and G.-X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Appl. Phys. B (1)

C. Ropers, G. Stibenz, G. Steinmeyer, R. Müller, D. Park, K. Lee, J. Kihm, J. Kim, Q. Park, D. Kim, and C. Lienau, “Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials,” Appl. Phys. B 84, 183–189 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

M.-T. Cheng, Y.-Q. Luo, P.-Z. Wang, and G.-X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

C. R. Acad. Sci., Ser. IV: Phys. (1)

C. Dorrer and M. Joffre, “Characterization of the spectral phase of ultrashort light pulses,” C. R. Acad. Sci., Ser. IV: Phys. 2, 1415–1426 (2001).

J. Mod. Opt. (1)

Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
[CrossRef]

J. Opt. Soc. Am. B (2)

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Nano Lett. (8)

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based local field imaging reveals Plasmon-Based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and Fan-Out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[CrossRef] [PubMed]

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by Far-Field spectral interferometry,” Nano Lett. 12, 45–49 (2012).
[CrossRef]

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in Low-Q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[CrossRef]

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett. 10, 3389–3394 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Radzewicz, M. la Grone, and J. Krasinski, “Interferometric measurement of femtosecond pulse distortion by lenses,” Opt. Commun. 126, 185–190 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).

Phys. Rev. Lett. (3)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: Space-Time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic–plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. USA 106, 21045–21050 (2009).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef] [PubMed]

Science (3)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082 (2001).
[CrossRef] [PubMed]

P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scenario of optically integrated plasmonic circuits and response function characterization. A pulsed far-field light source excites propagating plasmons (A) that are processed by functional plasmonic elements (B). After propagation the pulses are converted back into a far-field detectable signals (C) and full characterization (amplitude and phase) is facilitated via spectral interferometry [14] (D).

Fig. 2
Fig. 2

Scheme of the setup. BS = beam splitter, S = shutter, L = lens, PH = pinhole, FM = flip mirror, APD = avalanche photodiode. The linearly polarized excitation beam is split into a part for excitation and a reference. Signals from the sample plane are redirected by a piezo tip-tilt mirror to pass the pinhole (PH). The reference beam is dispersion compensated by traversing two prisms before being recombined with the signal for spectrally resolved heterodyne detection. The inset shows a scanning electron microscope (SEM) image of a representative silver nanowire with a length of 3.5 μm and a diameter of 90 nm.

Fig. 3
Fig. 3

Example images of plasmon propagation experiments. (a) An “excitation scan” that is used to locate a nanowire is shown. (b) An “emission scan” that is recorded by scanning the piezo tip-tilt mirror is depicted. The reflection of the excitation spot at the lower end of the nanowire (“Refl.”, black circle) and the emission at the upper end of the nanowire (“Em.”, red circle) are visible. Both signals can be completely characterized via spectral interferometry (SI), see Fig. 4. The gray nanowire is sketched for convenience. Since the plasmon propagates from the lower left (LL) to the upper right (UR), we term this measurement “LL2UR-propagation”. (c) The analog experiment for a “UR2LL-propagation” is shown. The insets in (b) and (c) show the excitation and detection polarizations. The axes of (b) and (c) are labeled with respect to the center of the position-dependent pulse arrival time (PD-PAT), which is explained in the corresponding section. Here, the labeling shows that the excitation position (“Refl.”) is the same in measurements (b) and (c) and the nanowire is shifted with respect to this position, as explained in the text.

Fig. 4
Fig. 4

Data evaluation process. The left (right) column shows data from the reflection (emission) position. (a) and (b): Spectral interferograms recorded at the respective positions of Fig. 3(b) are shown. (c) and (d): The amplitudes after the first fast Fourier transformation are depicted. Since the spectrometer detector provides 2048 pixels for the wavelength-space sampling, the non-oscillatory part is centered around pixel number 1024. The shaded area depicts the Fourier window that is used for the second (inverse) fast Fourier transformation. From this transformation the reconstructed intensity Ii(ω) and difference phase φdiff,i(ω) = φi(ω)−φref(ω) can be deduced [(e) and (f)]. Employing a third fast Fourier transformation using the data of (e) and (f) yields the temporal envelopes depicted in (g). The separation time Δt is deduced from the maxima and has to be corrected for the position-dependent pulse arrival time (PD-PAT, see corresponding section) to yield the plasmon propagation time tprop.

Fig. 5
Fig. 5

Ray-tracing model for the position-dependent pulse arrival time (PD-PAT). By scanning the piezo tip-tilt mirror different sample positions are mapped onto the pinhole (PH). For the black dashed position, signal 1 (green path) emerging from the center of the sample plane is focused onto the pinhole. For the black solid position, signal 2 (red path) passes the pinhole.

Fig. 6
Fig. 6

Visualizations of the PD-PAT. Note that the area size is 20 × 20 μm2 and the color code represents the relative arrival time. (a) The measured data that is acquired by illuminating the complete area is depicted. (b) The calculated data according to Eq. (2) is shown, where the parameters A = 48.0 cm, Δx = 0.68 μm, and Δy = 1.13 μm where used. The measured and calculated data agree very well. In order to connect this visualization to the plasmon propagation experiment shown in Fig. 3, the reflection and emission positions from that figure are marked here with white and black crosses, respectively.

Fig. 7
Fig. 7

Detailed schematic of Fig. 5 for trigonometric derivation of Eq. (1). M E ¯ is the normal to the untilted mirror surface (dashed orange line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 ¯ 1 ¯ = ( L obj n obj + D ) α 2 2 = A 2 ( r f ) 2 ,
T PD PAT ( x , y ) = A 2 c ( ( x + Δ x ) 2 + ( y + Δ y ) 2 f 2 ) ,
M P ¯ = { [ L obj ( f H ) ] n obj + D } sin α cos ( π 2 α 2 δ ) / cos ( α 2 + δ ) .
2 ¯ 1 ¯ = D ( H + L obj ) n obj + [ D + ( f + H + L obj ) n obj ] cos α + f n obj / cos α .
2 ¯ 1 ¯ = ( L obj n obj + D ) ( cos α 1 ) .

Metrics