Abstract

Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob'ev, “Surface second-harmonic generation: a novel technique for ps-pulse duration measurements,” Appl. Phys. B 36(3), 133–135 (1985).
    [CrossRef]
  2. R. E. Muenchausen, R. A. Keller, and N. S. Nogar, “Surface second-harmonic and sum-frequency generation using a noncollinear excitation geometry,” J. Opt. Soc. Am. B 4(2), 237–241 (1987).
    [CrossRef]
  3. P. Provencher, C. Y. Côté, and M. M. Denariez-Roberge, “Surface second-harmonic susceptibility determined by noncollinear reflected second-harmonic generation,” Can. J. Phys. 71(1-2), 66–69 (1993).
    [CrossRef]
  4. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
    [CrossRef] [PubMed]
  5. S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72(3), 033412 (2005).
    [CrossRef]
  6. S. Cattaneo and M. Kauranen, “Determination of second-order susceptibility components of thin films by two-beam second-harmonic generation,” Opt. Lett. 28(16), 1445–1447 (2003).
    [CrossRef] [PubMed]
  7. S. Cattaneo, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films,” J. Chem. Phys. 120(19), 9245–9252 (2004).
    [CrossRef] [PubMed]
  8. F. A. Bovino, M. C. Larciprete, M. Giardina, and C. Sibilia, International Patent (WO/2010/113190): “Method and system for determining second-order nonlinear optical coefficients,” PCT/IT2009/000131J. (2010).
  9. M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34(14), 2189–2191 (2009).
    [CrossRef] [PubMed]
  10. F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94(25), 251109 (2009).
    [CrossRef]
  11. C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101(45), 9390–9395 (1997).
    [CrossRef]
  12. W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505(3-4), 215–278 (1979).
    [PubMed]
  13. Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18(10), 775–777 (1993).
    [CrossRef] [PubMed]
  14. J. K. Lanyi, “X-ray crystallography of bacteriorhodopsin and its photointermediates: insights into the mechanism of proton transport,” Biochemistry (Mosc.) 66(11), 1192–1196 (2001).
    [CrossRef] [PubMed]
  15. K. C. Clays, S. V. Elshocht, M. Chi, E. Lepoudre, and A. Persoons, “Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal,” J. Opt. Soc. Am. B 18(10), 1474–1482 (2001).
    [CrossRef]
  16. R. D. Wampler, M. Zhou, D. H. Thompson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128(34), 10994–10995 (2006).
    [CrossRef] [PubMed]
  17. T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
    [CrossRef]
  18. T. Verbiest, K. Clays, and V. Rodriguez, Second Order Nonlinear Optical Characterization Techniques (CRC Press, New York, 2009).
  19. J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104(23), 9340–9348 (1996).
    [CrossRef]
  20. M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
    [CrossRef]
  21. A. Persoons, “Nonlinear optics, chirality, magneto-optics: a serendipitous road,” Opt. Mater. Express 1(1), 5–16 (2011).
    [CrossRef]
  22. S. Cattaneo and M. Kauranen, “Polarization techniques for surface nonlinear optics,” in Progress in Optics Ed. E. Wolf (Elsevier, Amsterdam, 2008).
  23. J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B Condens. Matter 51(3), 1425–1434 (1995).
    [CrossRef] [PubMed]
  24. M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17(19), 17000–17009 (2009).
    [CrossRef] [PubMed]
  25. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995).
    [CrossRef]
  26. C. Zhang, Q. W. Song, C. Y. Ku, R. B. Gross, and R. R. Birge, “Determination of the refractive index of a bacteriorhodopsin film,” Opt. Lett. 19(18), 1409–1411 (1994).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
[CrossRef]

2009 (3)

2006 (1)

R. D. Wampler, M. Zhou, D. H. Thompson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128(34), 10994–10995 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72(3), 033412 (2005).
[CrossRef]

2004 (1)

S. Cattaneo, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films,” J. Chem. Phys. 120(19), 9245–9252 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (2)

J. K. Lanyi, “X-ray crystallography of bacteriorhodopsin and its photointermediates: insights into the mechanism of proton transport,” Biochemistry (Mosc.) 66(11), 1192–1196 (2001).
[CrossRef] [PubMed]

K. C. Clays, S. V. Elshocht, M. Chi, E. Lepoudre, and A. Persoons, “Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal,” J. Opt. Soc. Am. B 18(10), 1474–1482 (2001).
[CrossRef]

1997 (1)

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101(45), 9390–9395 (1997).
[CrossRef]

1996 (1)

J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104(23), 9340–9348 (1996).
[CrossRef]

1995 (2)

W. N. Herman and L. M. Hayden, “Maker fringes revisited: second harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995).
[CrossRef]

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B Condens. Matter 51(3), 1425–1434 (1995).
[CrossRef] [PubMed]

1994 (2)

C. Zhang, Q. W. Song, C. Y. Ku, R. B. Gross, and R. R. Birge, “Determination of the refractive index of a bacteriorhodopsin film,” Opt. Lett. 19(18), 1409–1411 (1994).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
[CrossRef]

1993 (2)

Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18(10), 775–777 (1993).
[CrossRef] [PubMed]

P. Provencher, C. Y. Côté, and M. M. Denariez-Roberge, “Surface second-harmonic susceptibility determined by noncollinear reflected second-harmonic generation,” Can. J. Phys. 71(1-2), 66–69 (1993).
[CrossRef]

1987 (1)

1985 (1)

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob'ev, “Surface second-harmonic generation: a novel technique for ps-pulse duration measurements,” Appl. Phys. B 36(3), 133–135 (1985).
[CrossRef]

1979 (1)

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505(3-4), 215–278 (1979).
[PubMed]

Belardini, A.

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94(25), 251109 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34(14), 2189–2191 (2009).
[CrossRef] [PubMed]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17(19), 17000–17009 (2009).
[CrossRef] [PubMed]

Bertolotti, M.

Birge, R.

Birge, R. R.

Bogomolni, R. A.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505(3-4), 215–278 (1979).
[PubMed]

Bovino, F. A.

Cattaneo, S.

S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72(3), 033412 (2005).
[CrossRef]

S. Cattaneo, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films,” J. Chem. Phys. 120(19), 9245–9252 (2004).
[CrossRef] [PubMed]

S. Cattaneo and M. Kauranen, “Determination of second-order susceptibility components of thin films by two-beam second-harmonic generation,” Opt. Lett. 28(16), 1445–1447 (2003).
[CrossRef] [PubMed]

Centini, M.

Chi, M.

Clays, K. C.

Côté, C. Y.

P. Provencher, C. Y. Côté, and M. M. Denariez-Roberge, “Surface second-harmonic susceptibility determined by noncollinear reflected second-harmonic generation,” Can. J. Phys. 71(1-2), 66–69 (1993).
[CrossRef]

Denariez-Roberge, M. M.

P. Provencher, C. Y. Côté, and M. M. Denariez-Roberge, “Surface second-harmonic susceptibility determined by noncollinear reflected second-harmonic generation,” Can. J. Phys. 71(1-2), 66–69 (1993).
[CrossRef]

Downer, M. C.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Elshocht, S. V.

Figliozzi, P.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Gergely, C.

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
[CrossRef]

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101(45), 9390–9395 (1997).
[CrossRef]

Giardina, M.

Gierulski, A.

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob'ev, “Surface second-harmonic generation: a novel technique for ps-pulse duration measurements,” Appl. Phys. B 36(3), 133–135 (1985).
[CrossRef]

Gross, R.

Gross, R. B.

Hayden, L. M.

Herman, W. N.

Ikonen, M.

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
[CrossRef]

Jiang, Y.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Kauranen, M.

S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72(3), 033412 (2005).
[CrossRef]

S. Cattaneo, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films,” J. Chem. Phys. 120(19), 9245–9252 (2004).
[CrossRef] [PubMed]

S. Cattaneo and M. Kauranen, “Determination of second-order susceptibility components of thin films by two-beam second-harmonic generation,” Opt. Lett. 28(16), 1445–1447 (2003).
[CrossRef] [PubMed]

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B Condens. Matter 51(3), 1425–1434 (1995).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
[CrossRef]

Keller, R. A.

Ku, C. Y.

Kurkela, J.

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
[CrossRef]

Lanyi, J. K.

J. K. Lanyi, “X-ray crystallography of bacteriorhodopsin and its photointermediates: insights into the mechanism of proton transport,” Biochemistry (Mosc.) 66(11), 1192–1196 (2001).
[CrossRef] [PubMed]

Larciprete, M. C.

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94(25), 251109 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34(14), 2189–2191 (2009).
[CrossRef] [PubMed]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17(19), 17000–17009 (2009).
[CrossRef] [PubMed]

Lemmetyinen, H.

S. Cattaneo, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films,” J. Chem. Phys. 120(19), 9245–9252 (2004).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
[CrossRef]

Lepoudre, E.

Lozier, R. H.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505(3-4), 215–278 (1979).
[PubMed]

Maki, J.

J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104(23), 9340–9348 (1996).
[CrossRef]

Maki, J. J.

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B Condens. Matter 51(3), 1425–1434 (1995).
[CrossRef] [PubMed]

Marowsky, G.

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob'ev, “Surface second-harmonic generation: a novel technique for ps-pulse duration measurements,” Appl. Phys. B 36(3), 133–135 (1985).
[CrossRef]

Matlis, N.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Mattern, B.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Mendoza, B. S.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Mochán, W. L.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Muenchausen, R. E.

Nikolaus, B.

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob'ev, “Surface second-harmonic generation: a novel technique for ps-pulse duration measurements,” Appl. Phys. B 36(3), 133–135 (1985).
[CrossRef]

Nogar, N. S.

Passaseo, A.

Persoons, A.

A. Persoons, “Nonlinear optics, chirality, magneto-optics: a serendipitous road,” Opt. Mater. Express 1(1), 5–16 (2011).
[CrossRef]

K. C. Clays, S. V. Elshocht, M. Chi, E. Lepoudre, and A. Persoons, “Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal,” J. Opt. Soc. Am. B 18(10), 1474–1482 (2001).
[CrossRef]

J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104(23), 9340–9348 (1996).
[CrossRef]

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B Condens. Matter 51(3), 1425–1434 (1995).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
[CrossRef]

Provencher, P.

P. Provencher, C. Y. Côté, and M. M. Denariez-Roberge, “Surface second-harmonic susceptibility determined by noncollinear reflected second-harmonic generation,” Can. J. Phys. 71(1-2), 66–69 (1993).
[CrossRef]

Saab, M. B.

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
[CrossRef]

Sibilia, C.

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94(25), 251109 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34(14), 2189–2191 (2009).
[CrossRef] [PubMed]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17(19), 17000–17009 (2009).
[CrossRef] [PubMed]

Simpson, G. J.

R. D. Wampler, M. Zhou, D. H. Thompson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128(34), 10994–10995 (2006).
[CrossRef] [PubMed]

Song, Q. W.

Stoeckenius, W.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505(3-4), 215–278 (1979).
[PubMed]

Sun, L.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Tasco, V.

Thompson, D. H.

R. D. Wampler, M. Zhou, D. H. Thompson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128(34), 10994–10995 (2006).
[CrossRef] [PubMed]

Varo, G.

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
[CrossRef]

Váró, G.

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101(45), 9390–9395 (1997).
[CrossRef]

Verbiest, T.

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
[CrossRef]

Vorob'ev, N.

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob'ev, “Surface second-harmonic generation: a novel technique for ps-pulse duration measurements,” Appl. Phys. B 36(3), 133–135 (1985).
[CrossRef]

Vuorimaa, E.

S. Cattaneo, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films,” J. Chem. Phys. 120(19), 9245–9252 (2004).
[CrossRef] [PubMed]

Wampler, R. D.

R. D. Wampler, M. Zhou, D. H. Thompson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128(34), 10994–10995 (2006).
[CrossRef] [PubMed]

White, C. W.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Withrow, S. P.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Zhang, C.

Zhou, M.

R. D. Wampler, M. Zhou, D. H. Thompson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128(34), 10994–10995 (2006).
[CrossRef] [PubMed]

Zimányi, L.

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101(45), 9390–9395 (1997).
[CrossRef]

Appl. Phys. B (1)

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob'ev, “Surface second-harmonic generation: a novel technique for ps-pulse duration measurements,” Appl. Phys. B 36(3), 133–135 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94(25), 251109 (2009).
[CrossRef]

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic Maker’s fringes measurements,” Appl. Phys. Lett. 96(22), 221108 (2010).
[CrossRef]

Biochemistry (Mosc.) (1)

J. K. Lanyi, “X-ray crystallography of bacteriorhodopsin and its photointermediates: insights into the mechanism of proton transport,” Biochemistry (Mosc.) 66(11), 1192–1196 (2001).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505(3-4), 215–278 (1979).
[PubMed]

Can. J. Phys. (1)

P. Provencher, C. Y. Côté, and M. M. Denariez-Roberge, “Surface second-harmonic susceptibility determined by noncollinear reflected second-harmonic generation,” Can. J. Phys. 71(1-2), 66–69 (1993).
[CrossRef]

J. Am. Chem. Soc. (2)

R. D. Wampler, M. Zhou, D. H. Thompson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128(34), 10994–10995 (2006).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994).
[CrossRef]

J. Chem. Phys. (2)

S. Cattaneo, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films,” J. Chem. Phys. 120(19), 9245–9252 (2004).
[CrossRef] [PubMed]

J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104(23), 9340–9348 (1996).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101(45), 9390–9395 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. B (1)

S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72(3), 033412 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B Condens. Matter 51(3), 1425–1434 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Other (3)

F. A. Bovino, M. C. Larciprete, M. Giardina, and C. Sibilia, International Patent (WO/2010/113190): “Method and system for determining second-order nonlinear optical coefficients,” PCT/IT2009/000131J. (2010).

T. Verbiest, K. Clays, and V. Rodriguez, Second Order Nonlinear Optical Characterization Techniques (CRC Press, New York, 2009).

S. Cattaneo and M. Kauranen, “Polarization techniques for surface nonlinear optics,” in Progress in Optics Ed. E. Wolf (Elsevier, Amsterdam, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of the investigated film of BR containing purple membrane. (a) The retinal chromophores form a cone around the normal to the membrane plane, at an angle of ~23° with respect to the membrane plane. (b) BR is organized in trimers, i.e. three groups of 7 helices and a retinal cromophore (in white) buried inside the protein. (c) Upper view of the hexagonal arrangement of the BR timers in the purple membrane resulting in P3 symmetry class.

Fig. 2
Fig. 2

Scheme of noncollinear second harmonic generation.

Fig. 3
Fig. 3

Noncollinear second harmonic signal experimentally measured as a function of the polarization state of the first pump beam, ϕ1, and the second pump beam, ϕ2 (arbitrary units). Polarization state of the analyzer is set to (a) s ^ , i.e. ϕ = 90° and (b) to p ^ , i.e. ϕ = 0°, respectively. Sample rotation angle was fixed to α = −40°.

Fig. 4
Fig. 4

Calculated polarization chart of the different nonlinear tensors responsible of s ^ -polarized SHG generated by BR (a) χ eff (2)eee , (b) χ eff (2)eem1 , (c) χ eff (2)eem2 , (d) χ eff (2)mee .

Fig. 5
Fig. 5

Calculated polarization charts of the different nonlinear tensors, corresponding to p ^ -polarized SH generated by BR (a) χ eff (2)eee , (b) χ eff (2)eem1 , (c) χ eff (2)eem2 , (d) χ eff (2)mee .

Fig. 6
Fig. 6

Second harmonic intensity as a function of the polarization state of the first pump beam, ϕ1, and the second pump beam, ϕ2, calculated for a 4 μm BR slab, including the effect of linear absorption. The polarization state of the analyzer is set to (a) s ^ and (b) p ^ , respectively.

Tables (1)

Tables Icon

Table 1 Values of the Nonlinear Tensor Elements Normalized to χ zzz (2)eee .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P eff (2ω)= P D (2ω)i k Q (2ω) 1 ω k × M (2ω),
P D (2ω)= j,k χ ijk (2)eee E j (ω) E k (ω)+ χ ijk (2)eem E j (ω) B k (ω) ,
P ( α )=F(α)P( α 1 , α 2 )Φ(α) ( πL λ ) 2 ( χ eff (2) (α) ) 2 .
δ 1 + δ 2 =( πL 2 ) 2 λ [ k ω cos( α ' 1 )+ k ω cos( α ' 2 )+2 k 2ω cos( α ' ) ]
χ eff (2) (α)= χ eff (2)eee + χ eff (2)eem1 + χ eff (2)eem2 + χ eff (2)mee

Metrics