Abstract

An ytterbium-doped solid-core photonic bandgap fiber oscillator in an all-fiber format is investigated for high power at an extreme long wavelength. The photonic bandgap fiber is spliced with two fiber Bragg gratings to compose the cavity. The sharp-cut bandpass distributed filtering effect of the photonic bandgap fibers efficiently suppresses amplified spontaneous emission in the conventional high-gain region. Fine adjustment of the short cut-off wavelength by coiling with tighter diameter is performed to suppress parasitic lasing. A record output power of 53.6 W with a slope efficiency of 53% at 1178 nm was demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper 698.
  2. R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express12(5), 785–790 (2004).
    [CrossRef] [PubMed]
  3. L. R. Taylor, Y. Feng, and D. B. Calia, “50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express18(8), 8540–8555 (2010).
    [CrossRef] [PubMed]
  4. L. Taylor, Y. Feng, and D. Bonaccini Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express17(17), 14687–14693 (2009).
    [CrossRef] [PubMed]
  5. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express15(9), 5473–5476 (2007).
    [CrossRef] [PubMed]
  6. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007).
    [CrossRef]
  7. B. H. Chapman, E. J. R. Kelleher, S. V. Popov, K. M. Golant, J. Puustinen, O. Okhotnikov, and J. R. Taylor, “Picosecond bismuth-doped fiber MOPFA for frequency conversion,” Opt. Lett.36(19), 3792–3794 (2011).
    [CrossRef] [PubMed]
  8. J. Ota, A. Shirakawa, and K. Ueda, “High-power Yb-doped double-clad fiber laser directly operating at 1178nm,” Jpn. J. Appl. Phys.45(4), L117–L119 (2006).
    [CrossRef]
  9. H. Maruyama, A. Shirakawa, and K. Ueda, “1178nm linearly-polarized all fiber laser,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007, Technical Digest (CD) (Optical Society of America, 2007), paper TuA4–3.
  10. M. P. Kalita, S. U. Alam, C. Codemard, S. Yoo, A. J. Boyland, M. Ibsen, and J. K. Sahu, “Multi-watts narrow-linewidth all fiber Yb-doped laser operating at 1179 nm,” Opt. Express18(6), 5920–5925 (2010).
    [CrossRef] [PubMed]
  11. A. Shirakawa, C. B. Olausson, H. Maruyama, K. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
    [CrossRef]
  12. C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, “Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre,” Opt. Express16(18), 13657–13662 (2008).
    [CrossRef] [PubMed]
  13. R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, “Cladding-pumped Yb-doped solid photonic bandgap fiber for ASE suppression in shorter wavelength region,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuJ5.
  14. H. Maruyama, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fiber amplifier at 1150-1200nm,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FTuG5.
  15. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009).
    [CrossRef] [PubMed]
  16. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express18(16), 16345–16352 (2010).
    [CrossRef] [PubMed]
  17. A. Shirakawa, M. Chen, X. Fan, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “Single-frequency photonic bandgap fiber amplifier at 1178 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AT1A.5.
  18. R. Goto, E. C. Mägi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett.45(17), 877–878 (2009).
    [CrossRef]
  19. K. Takenaga, S. Tanigawa, R. Goto, M. Kashiwagi, and S. Matsuo, “Linearly-polarized lasing at 1180 nm using polarization-maintaining Yb-doped solid photonic bandgap fiber,” in 35th European Conference on Optical Communication (Vienna, Austria, 2009), P1.10.
  20. M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
    [CrossRef]
  21. L. Bigot, G. Bouwmans, Y. Quiquempois, A. Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express17(12), 10105–10112 (2009).
    [CrossRef] [PubMed]
  22. R. Goto, I. Fsaifes, A. Baz, L. Bigot, K. Takenaga, S. Matsuo, and S. D. Jackson, “UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber,” Opt. Express19(14), 13525–13530 (2011).
    [CrossRef] [PubMed]
  23. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011).
    [CrossRef] [PubMed]
  24. A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
    [CrossRef]

2011

2010

2009

2008

2007

2006

J. Ota, A. Shirakawa, and K. Ueda, “High-power Yb-doped double-clad fiber laser directly operating at 1178nm,” Jpn. J. Appl. Phys.45(4), L117–L119 (2006).
[CrossRef]

2004

Alam, S. U.

Baz, A.

Bigot, L.

Bjarklev, A.

Bonaccini Calia, D.

Bouwmans, G.

Boyland, A. J.

Broeng, J.

Bufetov, I. A.

Calia, D. B.

Chapman, B. H.

Chen, M.

Codemard, C.

Convery, M.

Dianov, E. M.

Dong, J.

Douay, M.

Falk, C. I.

Fan, Y.

Feng, Y.

Ferin, A. A.

Fsaifes, I.

Fujimaki, M.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

Furuya, H.

A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
[CrossRef]

Golant, K. M.

Goto, R.

Hansen, K. P.

He, B.

Himeno, K.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

Ibsen, M.

Ichii, K.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

Jackson, S. D.

Jensen, B. B.

Kalita, M. P.

Kamijo, M.

A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
[CrossRef]

Kashiwagi, M.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

Kelleher, E. J. R.

Kitabayashi, T.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

Le Rouge, A.

Liu, H.

Lou, Q.

Lyngsø, J. K.

Mägi, E. C.

R. Goto, E. C. Mägi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett.45(17), 877–878 (2009).
[CrossRef]

Maruyama, H.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009).
[CrossRef] [PubMed]

Matsuo, S.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

R. Goto, I. Fsaifes, A. Baz, L. Bigot, K. Takenaga, S. Matsuo, and S. D. Jackson, “UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber,” Opt. Express19(14), 13525–13530 (2011).
[CrossRef] [PubMed]

McKay, T.

Medvedkov, O. I.

Melkumov, M. A.

Mildren, R.

Mizuuchi, K.

A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
[CrossRef]

Okhotnikov, O.

Olausson, C. B.

Ota, J.

A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
[CrossRef]

J. Ota, A. Shirakawa, and K. Ueda, “High-power Yb-doped double-clad fiber laser directly operating at 1178nm,” Jpn. J. Appl. Phys.45(4), L117–L119 (2006).
[CrossRef]

Pask, H.

Piper, J.

Popov, S. V.

Pureur, V.

Puustinen, J.

Quiquempois, Y.

Razdobreev, I.

Rulkov, A. B.

Sahu, J. K.

Shima, K.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

Shirakawa, A.

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express18(16), 16345–16352 (2010).
[CrossRef] [PubMed]

A. Shirakawa, C. B. Olausson, H. Maruyama, K. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009).
[CrossRef] [PubMed]

A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
[CrossRef]

J. Ota, A. Shirakawa, and K. Ueda, “High-power Yb-doped double-clad fiber laser directly operating at 1178nm,” Jpn. J. Appl. Phys.45(4), L117–L119 (2006).
[CrossRef]

Shubin, A. V.

Takenaga, K.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

R. Goto, I. Fsaifes, A. Baz, L. Bigot, K. Takenaga, S. Matsuo, and S. D. Jackson, “UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber,” Opt. Express19(14), 13525–13530 (2011).
[CrossRef] [PubMed]

Tanigawa, S.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

Taylor, J. R.

Taylor, L.

Taylor, L. R.

Therkildsen, K. T.

Thomsen, J. W.

Ueda, K.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express18(16), 16345–16352 (2010).
[CrossRef] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009).
[CrossRef] [PubMed]

A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
[CrossRef]

J. Ota, A. Shirakawa, and K. Ueda, “High-power Yb-doped double-clad fiber laser directly operating at 1178nm,” Jpn. J. Appl. Phys.45(4), L117–L119 (2006).
[CrossRef]

Vanvincq, O.

Wei, Y.

Yamamoto, K.

A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
[CrossRef]

Yoo, S.

Zheng, J.

Zhou, J.

Electron. Lett.

R. Goto, E. C. Mägi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett.45(17), 877–878 (2009).
[CrossRef]

IEEE J. Quantum Electron.

M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

J. Ota, A. Shirakawa, and K. Ueda, “High-power Yb-doped double-clad fiber laser directly operating at 1178nm,” Jpn. J. Appl. Phys.45(4), L117–L119 (2006).
[CrossRef]

Opt. Express

C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, “Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre,” Opt. Express16(18), 13657–13662 (2008).
[CrossRef] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009).
[CrossRef] [PubMed]

L. Bigot, G. Bouwmans, Y. Quiquempois, A. Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express17(12), 10105–10112 (2009).
[CrossRef] [PubMed]

L. Taylor, Y. Feng, and D. Bonaccini Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express17(17), 14687–14693 (2009).
[CrossRef] [PubMed]

M. P. Kalita, S. U. Alam, C. Codemard, S. Yoo, A. J. Boyland, M. Ibsen, and J. K. Sahu, “Multi-watts narrow-linewidth all fiber Yb-doped laser operating at 1179 nm,” Opt. Express18(6), 5920–5925 (2010).
[CrossRef] [PubMed]

L. R. Taylor, Y. Feng, and D. B. Calia, “50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express18(8), 8540–8555 (2010).
[CrossRef] [PubMed]

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express18(16), 16345–16352 (2010).
[CrossRef] [PubMed]

R. Goto, I. Fsaifes, A. Baz, L. Bigot, K. Takenaga, S. Matsuo, and S. D. Jackson, “UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber,” Opt. Express19(14), 13525–13530 (2011).
[CrossRef] [PubMed]

Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011).
[CrossRef] [PubMed]

R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express12(5), 785–790 (2004).
[CrossRef] [PubMed]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express15(9), 5473–5476 (2007).
[CrossRef] [PubMed]

Opt. Fiber Technol.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

Opt. Lett.

Other

R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, “Cladding-pumped Yb-doped solid photonic bandgap fiber for ASE suppression in shorter wavelength region,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuJ5.

H. Maruyama, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fiber amplifier at 1150-1200nm,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FTuG5.

A. Shirakawa, M. Chen, X. Fan, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “Single-frequency photonic bandgap fiber amplifier at 1178 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AT1A.5.

H. Maruyama, A. Shirakawa, and K. Ueda, “1178nm linearly-polarized all fiber laser,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007, Technical Digest (CD) (Optical Society of America, 2007), paper TuA4–3.

K. Takenaga, S. Tanigawa, R. Goto, M. Kashiwagi, and S. Matsuo, “Linearly-polarized lasing at 1180 nm using polarization-maintaining Yb-doped solid photonic bandgap fiber,” in 35th European Conference on Optical Communication (Vienna, Austria, 2009), P1.10.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper 698.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Microscope image of the Yb-PBGF structure. (b) Air-clad structure surrounding the pump-cladding. (c) Near field CCD image of the core-mode at 1178 nm of the Yb-PBGF, where the stress rods are in the horizontal direction.

Fig. 2
Fig. 2

(a) Transmission spectra of Yb-PBGF with coiling diameters of 26 cm and 20 cm. (b). Loss profiles of 43 m PBGFs coiled with 26 cm (red) and 20 cm (blue) compared with the small-signal gain without bandgap (black). Dashed curves are the prospected loss profiles.

Fig. 3
Fig. 3

Experiment setup of the Yb-PBGF oscillator at 1178 nm.

Fig. 4
Fig. 4

Splice point of PBGF and DCF (a) before and (b) after splicing.

Fig. 5
Fig. 5

(a) Output power of the Yb-PBGF oscillator at 1178 nm. (b) Net small-signal gain spectra of the 43 m Yb-PBGF oscillator with D = 26 cm (red, dash-dot) and D = 20 cm (blue, solid). The dashed curve is the gain without bandgap for reference. All curves are calculated with 100 W pump power.

Fig. 6
Fig. 6

Output spectra of the Yb-PBGF oscillator with (a) D = 26 cm at 39.2 W and (b) D = 20cm at 53.6 W. The blue curves are the output spectra and the red dot curves are the bandgap shape. Insert of (b) is the zoom-in-view around 1178 nm.

Metrics