Abstract

Confinement loss of inhibited coupling fibers with a cladding composed of a lattice of tubes of various shapes is theoretically and numerically investigated. Both solid core and hollow core are taken into account. It is shown that in case of polygonal shaped tubes, confinement loss is affected by extra loss due to Fano resonances between core modes and cladding modes with high spatial dependence. This explains why hollow core Kagome fibers exhibit much higher confinement loss with respect to tube lattice fibers and why hypocycloid core cladding interfaces significantly reduce fiber loss. Moreover it is shown that tube deformations, due for example to fabrication process, affect fiber performances. A relationship between the number of polygon sides and the spectral position of the extra loss is found. This suggests general guide lines for the design and fabrication of fibers free of Fano resonance in the spectral range of interest.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [CrossRef] [PubMed]
  2. A. Argyros and J. Pla, “Hollow-core polymer fibers with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
    [CrossRef] [PubMed]
  3. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express 18, 25556–25566 (2010).
    [CrossRef] [PubMed]
  4. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negatice curvature of the core boundary in the spectral region >3.5μm,” Opt. Express 19, 1441–1448 (2011).
    [CrossRef] [PubMed]
  5. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negativecurvature hollow core,” Opt. Express 19, 25723–25728 (2011).
    [CrossRef]
  6. J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
    [CrossRef]
  7. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [CrossRef]
  8. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
    [CrossRef] [PubMed]
  9. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J. L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34, 2888–2890 (2009).
    [CrossRef] [PubMed]
  10. L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Light-wave Technol. 30, 1470–1474 (2012).
    [CrossRef]
  11. L. Vincetti, V. Setti, and M. Zoboli, “Confinement loss of tube lattice and kagome fibers,” in Specialty Optical Fibers (SOF)Toronto, Canada (2011).
  12. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core kagome hollow-core photonics crystal fiber,” Opt. Lett. 36, 669–671 (2011).
    [CrossRef] [PubMed]
  13. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18, 5142–5150 (2010).
    [CrossRef] [PubMed]
  14. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14, 6291–6296 (2006).
    [CrossRef] [PubMed]
  15. X. Jiang, T. G. Euser, A. Abdolvand, F. Babic, F. Tani, N. Y. Joly, J. C. Travers, and P. St. J. Russell, “Single-mode hollow-core photonic crystal fiber made from soft glass,” Opt. Express 19, 15438–15444 (2011).
    [CrossRef] [PubMed]
  16. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
    [CrossRef] [PubMed]
  17. L. Vincetti and V. Setti, “Fano resonances in polygonal tube fibers,” J. Lightwave Technol. 30, 31–37 (2012).
    [CrossRef]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 24, 1866–1878 (1961).
    [CrossRef]
  19. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commun. 145, 291–299 (1998).
    [CrossRef]
  20. S. S. Wang, R. Magnusson, J. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [CrossRef]
  21. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2002).
    [CrossRef]
  22. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  23. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001).
    [CrossRef]
  24. S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
    [CrossRef]
  25. W. P. Huang and J. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express 17, 19134–19152 (2009).
    [CrossRef]
  26. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851–10864 (2006).
    [CrossRef] [PubMed]
  27. M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEEE 116, 214–224 (1969).

2012 (2)

L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Light-wave Technol. 30, 1470–1474 (2012).
[CrossRef]

L. Vincetti and V. Setti, “Fano resonances in polygonal tube fibers,” J. Lightwave Technol. 30, 31–37 (2012).
[CrossRef]

2011 (6)

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negatice curvature of the core boundary in the spectral region >3.5μm,” Opt. Express 19, 1441–1448 (2011).
[CrossRef] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core kagome hollow-core photonics crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[CrossRef] [PubMed]

X. Jiang, T. G. Euser, A. Abdolvand, F. Babic, F. Tani, N. Y. Joly, J. C. Travers, and P. St. J. Russell, “Single-mode hollow-core photonic crystal fiber made from soft glass,” Opt. Express 19, 15438–15444 (2011).
[CrossRef] [PubMed]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
[CrossRef] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[CrossRef]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negativecurvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

2010 (3)

2009 (3)

2007 (2)

A. Argyros and J. Pla, “Hollow-core polymer fibers with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

2006 (2)

2002 (2)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001).
[CrossRef]

1998 (1)

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commun. 145, 291–299 (1998).
[CrossRef]

1990 (1)

1987 (1)

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[CrossRef]

1969 (1)

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEEE 116, 214–224 (1969).

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 24, 1866–1878 (1961).
[CrossRef]

Abdolvand, A.

Anthony, J.

Argyros, A.

Astapovich, M. S.

Auguste, J. L.

Babic, F.

Bagby, J.

Beaudou, B.

Benabid, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core kagome hollow-core photonics crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Bird, D. M.

Biriukov, A. S.

Birks, T. A.

Chang, H.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
[CrossRef]

Chang, W.

Chen, H.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
[CrossRef]

Chuang, S. L.

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[CrossRef]

Churbanov, M. F.

Coen, S.

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core kagome hollow-core photonics crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001).
[CrossRef]

de Sterke, C. M.

Dianov, E. M.

Euser, T. G.

Fan, S.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 24, 1866–1878 (1961).
[CrossRef]

Février, S.

Friesem, A. A.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commun. 145, 291–299 (1998).
[CrossRef]

George, A. K.

Gérôme, F.

Glasberg, S.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commun. 145, 291–299 (1998).
[CrossRef]

Grujic, T.

Huang, W. P.

Humbert, G.

Jiang, X.

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Joly, N. Y.

Kharadly, M. M. Z.

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEEE 116, 214–224 (1969).

Knight, J. C.

Kosolapov, A. F.

Kuhlmey, B. T.

Labruyère, A.

Leonhardt, R.

Leon-Saval, S. G.

Lewis, J. E.

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEEE 116, 214–224 (1969).

Li, Y.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
[CrossRef]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Lu, J.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
[CrossRef]

Luan, F.

Magnusson, R.

McPhedran, R. C.

Moharam, M. G.

Mu, J.

Nold, J.

Pan, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
[CrossRef]

Pathmanandavel, K.

Pearce, G. J.

Pla, J.

Plotnichenko, V. G.

Pryamikov, A. D.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core kagome hollow-core photonics crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Rosenblatt, D.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commun. 145, 291–299 (1998).
[CrossRef]

Russell, P. St.

Russell, P. St. J.

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001).
[CrossRef]

Semjov, S. L.

Setti, V.

L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Light-wave Technol. 30, 1470–1474 (2012).
[CrossRef]

L. Vincetti and V. Setti, “Fano resonances in polygonal tube fibers,” J. Lightwave Technol. 30, 31–37 (2012).
[CrossRef]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
[CrossRef] [PubMed]

L. Vincetti, V. Setti, and M. Zoboli, “Confinement loss of tube lattice and kagome fibers,” in Specialty Optical Fibers (SOF)Toronto, Canada (2011).

Sharon, A.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commun. 145, 291–299 (1998).
[CrossRef]

Shiryaev, V. S.

Snopatin, G. E.

Stone, J. M.

Suh, W.

Sun, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
[CrossRef]

Tani, F.

Travers, J. C.

Viale, P.

Vincetti, L.

L. Vincetti and V. Setti, “Fano resonances in polygonal tube fibers,” J. Lightwave Technol. 30, 31–37 (2012).
[CrossRef]

L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Light-wave Technol. 30, 1470–1474 (2012).
[CrossRef]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
[CrossRef] [PubMed]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001).
[CrossRef]

L. Vincetti, V. Setti, and M. Zoboli, “Confinement loss of tube lattice and kagome fibers,” in Specialty Optical Fibers (SOF)Toronto, Canada (2011).

Wang, S. S.

Wang, Y. Y.

Wheeler, N. V.

Yu, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
[CrossRef]

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001).
[CrossRef]

L. Vincetti, V. Setti, and M. Zoboli, “Confinement loss of tube lattice and kagome fibers,” in Specialty Optical Fibers (SOF)Toronto, Canada (2011).

Appl. Phys. Lett. (1)

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2009).
[CrossRef]

J. Light-wave Technol. (1)

L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Light-wave Technol. 30, 1470–1474 (2012).
[CrossRef]

J. Lightwave Technol. (2)

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[CrossRef]

L. Vincetti and V. Setti, “Fano resonances in polygonal tube fibers,” J. Lightwave Technol. 30, 31–37 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commun. 145, 291–299 (1998).
[CrossRef]

Opt. Express (11)

J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14, 6291–6296 (2006).
[CrossRef] [PubMed]

B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851–10864 (2006).
[CrossRef] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibers with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[CrossRef] [PubMed]

W. P. Huang and J. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express 17, 19134–19152 (2009).
[CrossRef]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18, 5142–5150 (2010).
[CrossRef] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
[CrossRef] [PubMed]

T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express 18, 25556–25566 (2010).
[CrossRef] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negatice curvature of the core boundary in the spectral region >3.5μm,” Opt. Express 19, 1441–1448 (2011).
[CrossRef] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negativecurvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

X. Jiang, T. G. Euser, A. Abdolvand, F. Babic, F. Tani, N. Y. Joly, J. C. Travers, and P. St. J. Russell, “Single-mode hollow-core photonic crystal fiber made from soft glass,” Opt. Express 19, 15438–15444 (2011).
[CrossRef] [PubMed]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001).
[CrossRef]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 24, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Proc. IEEE (1)

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEEE 116, 214–224 (1969).

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Other (1)

L. Vincetti, V. Setti, and M. Zoboli, “Confinement loss of tube lattice and kagome fibers,” in Specialty Optical Fibers (SOF)Toronto, Canada (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a)–(b) Cross sections of a HC-TLF and a SC-TLF respectively, with circular tubes in the cladding. (c)–(d) Cross sections of a standalone circular and a polygonal tube fiber. They also represent the tubes composing the cladding of CTLFs and PTLFs, respectively. White and gray regions represent low refractive index n1 background material and high index n2 one respectively.

Fig. 2
Fig. 2

(a)–(b) Eϕ field component for the cladding ring modes H E 1 , 2 ri and L P 11 , 2 ri respectively. (c) Top: comparison of the confinement loss spectra of a circular (black dots) and a 12-sided polygonal (red triangles) tube fibers. Geometrical and physical properties of fibers are described through the paper. Middle: cutoff frequencies for the tube modes of the circular tube fiber. Dotted lines highlight the tubes modes which cause Fano resonances in tube fiber, according to Eq. (2). Solid lines highlight the cladding modes which defines the boundaries of the Fano resonances regions according to Eq. (8) with μ̄ = 3. Red, green, and blue colors are used for the cases m = 1 and m = 2, respectively. Bottom: comparison of the confinement loss performance of SF-TLFs with circular (black dots) and 12-sided polygonal (red triangles) tubes in the cladding.

Fig. 3
Fig. 3

(a) Zoom of Fig. 2(c) for F = [0.39, 0.75]. In the middle the degeneration of the HEξ+1,γ and EHξ−1,γ modes composing the LPξ,γ modes is highlighted. (b) z-component of the Poynting vector of the guided mode at F = 0.569373 of the PTF (top) and PTLF (bottom) both with N = 24.

Fig. 4
Fig. 4

(a) Example of perturbation function for a PTLF. z-component of the Poynting vector of the fundamental mode on log scale is also shown. The inset shows the perturbation function for a generic cladding tube, with the local reference system centered at its center. (b) Electric field components of the fundamental mode along the six innermost tubes of the TLF; different colors refer to different tubes.

Fig. 5
Fig. 5

Comparison of the confinement loss performances between a HC-TLF with circular (black dots) and N-sided polygonal HC-TLF (red triangles), with N = 6 (a), N = 12 (b), N = 24 (c), N = 66 (d). Rectangles on the top of the graphs represent the cutoff regions for the rings modes that satisfy Eq. (8) with μ̄ = 3. Different colors are used for different values of the m parameter. In (a) only m ≤ 4 has been considered for clearness.

Fig. 6
Fig. 6

(a) Rounding scheme of the polygon vertex: L is the length of the polygon side and a is the distance of the rounding point from the center of the side. (b) Comparison of the confinement loss between a SC-TLF with circles (black dots) or rounded hexagons (red triangles) in the cladding. Resonant rings modes are highlighted on the top of the figure. Yellow regions represent the high confinement loss regions reported in [14]. (c) Hybridization between core mode and ring modes L P 4 , 1 ri (A) and L P 8 , 1 ri (B) computed at F = 0.305 and F = 0.47, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

F = 2 t c f n 1 2 n 2 2
| ξ m N | = 1
K ˜ co , ri = π f 2 S Δ ε ( E ¯ t co E ¯ t ri ε ε c + Δ ε E z co E z ri ) d S ,
Δ ε ( r ¯ ) = i = 1 N t Δ ε ˜ ( r ¯ C ¯ i ) ;
K ˜ co , ri x = ( 1 ) δ x , z π f 2 i = 1 N t A i Δ ε ˜ ( ε ˜ c ε ˜ c + Δ ε ˜ δ x , z E x co E x ri ) r i d ϕ i d r i
E x ri ( r i , ϕ i ) = R x 1 ri ( r i ) cos ( ξ ϕ i ) + R x 2 ri ( r i ) sin ( ξ ϕ i ) ,
E x co ( r i , ϕ i ) = μ = 0 μ ¯ A x μ R x 1 co , μ ( r i ) cos ( μ ϕ i ) + B x μ R x 2 co , μ ( r i ) sin ( μ ϕ i ) ,
| m N ξ | μ ¯ .
ξ = a F b .
F q = N + b μ ¯ a ,
N = a F q b + μ ¯ ,

Metrics