Abstract

In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002).
    [CrossRef]
  3. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt. Lett.25(5), 320–322 (2000).
    [CrossRef] [PubMed]
  4. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
    [CrossRef] [PubMed]
  5. Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011).
    [CrossRef]
  6. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express14(7), 2798–2804 (2006).
    [CrossRef] [PubMed]
  7. S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006).
    [CrossRef] [PubMed]
  8. S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
    [CrossRef]
  9. H. Yokoyama, A. Sato, H. C. Guo, K. Sato, M. Mure, and H. Tsubokawa, “Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers,” Opt. Express16(22), 17752–17758 (2008).
    [CrossRef] [PubMed]
  10. M. Kuramoto, N. Kitajima, H. C. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, “Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source,” Opt. Lett.32(18), 2726–2728 (2007).
    [CrossRef] [PubMed]
  11. K. Taira, T. Hashimoto, and H. Yokoyama, “Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode,” Opt. Express15(5), 2454–2458 (2007).
    [CrossRef] [PubMed]
  12. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
    [CrossRef] [PubMed]
  13. I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002).
    [CrossRef]
  14. M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005).
    [CrossRef] [PubMed]
  15. W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010).
    [CrossRef] [PubMed]
  16. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
    [CrossRef]
  17. X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
    [CrossRef]
  18. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
    [CrossRef]
  19. M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
    [CrossRef]
  20. M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011).
    [CrossRef]
  21. T. W. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron.40(11), 1527–1539 (2004).
    [CrossRef]
  22. Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
    [CrossRef]
  23. Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Fundamental and harmonic mode-locking with pulse repetition rate between 200 MHz and 6.8 GHz in a quantum-dot external-cavity laser,” in Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC),2011Conference on and 12th European Quantum Electronics Conference, (Munich, Germany, 2011), p. CF_P23.
  24. M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot laser diodes for low repetition rate, sub-picosecond pulse generation,” IEEE J. Sel. Top. Quantum Electron.17(5), 1264–1271 (2011).
    [CrossRef]
  25. Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
    [CrossRef]
  26. R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
    [CrossRef]
  27. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
    [CrossRef] [PubMed]

2011

Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011).
[CrossRef]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011).
[CrossRef]

Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
[CrossRef]

M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot laser diodes for low repetition rate, sub-picosecond pulse generation,” IEEE J. Sel. Top. Quantum Electron.17(5), 1264–1271 (2011).
[CrossRef]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

2010

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
[CrossRef]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
[CrossRef]

W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010).
[CrossRef] [PubMed]

2009

S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
[CrossRef]

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
[CrossRef] [PubMed]

2008

2007

2006

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006).
[CrossRef] [PubMed]

H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express14(7), 2798–2804 (2006).
[CrossRef] [PubMed]

2005

M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005).
[CrossRef] [PubMed]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

2004

T. W. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron.40(11), 1527–1539 (2004).
[CrossRef]

2002

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002).
[CrossRef]

I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002).
[CrossRef]

2001

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

2000

1990

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Artigas, D.

Aviles-Espinosa, R.

Barbarin, Y.

Berg, T. W.

T. W. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron.40(11), 1527–1539 (2004).
[CrossRef]

Blanchard-Desce, M.

Breivik, M.

Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011).
[CrossRef]

Cataluna, M. A.

Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
[CrossRef]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011).
[CrossRef]

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Chan, M. C.

M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005).
[CrossRef] [PubMed]

Chen, I. H.

I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002).
[CrossRef]

Chen, J. X.

S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
[CrossRef]

Chen, S. Y.

W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010).
[CrossRef] [PubMed]

Chen, Y. S.

W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010).
[CrossRef] [PubMed]

Chen, Z.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006).
[CrossRef] [PubMed]

Cheng, J.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Cheng, P. C.

I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002).
[CrossRef]

Chu, S. W.

I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Ding, Y.

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011).
[CrossRef]

Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
[CrossRef]

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
[CrossRef]

Drobizhev, M.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

Durst, M. E.

Fedorova, K. A.

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011).
[CrossRef]

Feng, C. Y.

Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011).
[CrossRef]

Filippidis, G.

Fimland, B. O.

Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011).
[CrossRef]

Furushima, Y.

Guo, H. C.

Hamaguchi, H. O.

Hamilton, C.

Hashimoto, T.

Hong, Z. B.

S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
[CrossRef]

Huang, X. D.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Hughes, T. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

Ikeda, M.

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
[CrossRef]

M. Kuramoto, N. Kitajima, H. C. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, “Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source,” Opt. Lett.32(18), 2726–2728 (2007).
[CrossRef] [PubMed]

Il'inskaya, N. D.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Jiang, X. S.

S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
[CrossRef]

Kano, H.

Keller, U.

Kitajima, N.

Kobat, D.

Koda, R.

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
[CrossRef]

Korkotian, E.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002).
[CrossRef]

Kovsh, A. R.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Krasieva, T. B.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006).
[CrossRef] [PubMed]

Krestnikov, I.

Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
[CrossRef]

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
[CrossRef]

Kuramoto, M.

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
[CrossRef]

M. Kuramoto, N. Kitajima, H. C. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, “Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source,” Opt. Lett.32(18), 2726–2728 (2007).
[CrossRef] [PubMed]

Ledentsov, N. N.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Lee, C. F.

W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010).
[CrossRef] [PubMed]

Lee, W. J.

W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010).
[CrossRef] [PubMed]

Lester, L. F.

Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Li, H.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Li, Y.

Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011).
[CrossRef]

Lin, B. L.

I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002).
[CrossRef]

Liu, T. M.

M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005).
[CrossRef] [PubMed]

Livshits, D.

Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
[CrossRef]

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
[CrossRef]

Livshits, D. A.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Loza-Alvarez, P.

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

Malcolm, G.

Malloy, K. J.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Mertz, J.

Miyajima, T.

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
[CrossRef]

Mo Xia, R. V.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

Moreaux, L.

Mork, J.

T. W. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron.40(11), 1527–1539 (2004).
[CrossRef]

Mure, M.

Nikitichev, D.

Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
[CrossRef]

Nikitichev, D. I.

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011).
[CrossRef]

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
[CrossRef]

Nishimura, N.

Oki, T.

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
[CrossRef]

Oron, D.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002).
[CrossRef]

Penty,

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

Penty, R. V.

M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot laser diodes for low repetition rate, sub-picosecond pulse generation,” IEEE J. Sel. Top. Quantum Electron.17(5), 1264–1271 (2011).
[CrossRef]

Rae, A. R.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

Rafailov, E.

Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
[CrossRef]

Rafailov, E. U.

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011).
[CrossRef]

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Rebane, A.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

Sandre, O.

Santos, S. I.

Sato, A.

Sato, K.

Schaffer, C. B.

Segal, M.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Silberberg, Y.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002).
[CrossRef]

Stintz, A.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Südmeyer, T.

Sun, C. K.

W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010).
[CrossRef] [PubMed]

M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005).
[CrossRef] [PubMed]

I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002).
[CrossRef]

Tai, S. P.

M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005).
[CrossRef] [PubMed]

Taira, K.

Tang, S.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006).
[CrossRef] [PubMed]

Tempea, G.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006).
[CrossRef] [PubMed]

Thompson, M. G.

M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot laser diodes for low repetition rate, sub-picosecond pulse generation,” IEEE J. Sel. Top. Quantum Electron.17(5), 1264–1271 (2011).
[CrossRef]

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

Tromberg, B. J.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006).
[CrossRef] [PubMed]

Tsubokawa, H.

Ustinov, V. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Watanabe, H.

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Weingarten, K. J.

White, I. H.

M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot laser diodes for low repetition rate, sub-picosecond pulse generation,” IEEE J. Sel. Top. Quantum Electron.17(5), 1264–1271 (2011).
[CrossRef]

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

Wong, A. W.

Xia, M.

M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot laser diodes for low repetition rate, sub-picosecond pulse generation,” IEEE J. Sel. Top. Quantum Electron.17(5), 1264–1271 (2011).
[CrossRef]

Xie, S. S.

S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
[CrossRef]

Xu, C.

Yelin, D.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002).
[CrossRef]

Yokoyama, H.

Zadiranov, Y. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Zheng, L. Q.

S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
[CrossRef]

Zhukov, A. E.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

Zhuo, S. M.

S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
[CrossRef]

Appl. Phys. B-Lasers Opt.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002).
[CrossRef]

Appl. Phys. Express

Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011).
[CrossRef]

Appl. Phys. Lett.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005).
[CrossRef]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010).
[CrossRef]

Biomed. Opt. Express

Electron. Lett.

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010).
[CrossRef]

IEEE J. Quantum Electron.

T. W. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron.40(11), 1527–1539 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot laser diodes for low repetition rate, sub-picosecond pulse generation,” IEEE J. Sel. Top. Quantum Electron.17(5), 1264–1271 (2011).
[CrossRef]

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011).
[CrossRef]

J. Biomed. Opt.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006).
[CrossRef] [PubMed]

M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005).
[CrossRef] [PubMed]

W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010).
[CrossRef] [PubMed]

Laser Phys. Lett.

S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009).
[CrossRef]

Nat. Methods

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

Nat. Photonics

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Fundamental and harmonic mode-locking with pulse repetition rate between 200 MHz and 6.8 GHz in a quantum-dot external-cavity laser,” in Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC),2011Conference on and 12th European Quantum Electronics Conference, (Munich, Germany, 2011), p. CF_P23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration of a QD-MOPA system and the experimental setup. CBG OC: chirped Bragg grating output coupler; TS: motorized translation stage; OI: optical isolator; HWP: half wave plate; SOA: semiconductor optical amplifier; SMF: single-mode fiber; FS: fiber splitter; OSA: optical spectrum analyzer; PC: Personal computer; Autoco: autocorrelator; Osc: oscilloscope; PD: photo detector; RFSA: RF spectrum analyzer.

Fig. 2
Fig. 2

CW output power (red) and gain (black) versus SOA current at 20 °C.

Fig. 3
Fig. 3

L-I characteristics of QD-ECMLL with 20% absorber to length ratio and CBG external cavity output coupler for 0 and 4-V reverse bias at 1.1 GHz and 648 MHz repetition rates.

Fig. 4
Fig. 4

(a) Autocorrelation trace, (b) optical spectrum, (c) RF spectrum with 200-MHz span, and (d) RF spectrum with 20-GHz span, at reverse bias of 4 V and forward current of 200 mA with a pulse repetition rate of 1.1 GHz directly from the QD-ECMLL at 20 °C.

Fig. 5
Fig. 5

(a) Autocorrelation trace, (b) optical spectrum, (b) RF spectrum with 200-MHz span, and (d) RF spectrum with 20-GHz span, for a pulsed input at a pulse repetition rate of 1.1 GHz and a current of 3000 mA applied to the SOA at 20 °C.

Fig. 6
Fig. 6

(a) and (b), Peak power (red), gain (black), average power (black), and FOM (red) against SOA current for a 1.1-GHz repetition rate.

Fig. 7
Fig. 7

(a) Autocorrelation trace, (b) optical spectrum, (c) RF spectrum with 200-MHz span, and (d) RF spectrum with 20-GHz span, at reverse bias of 4 V and forward current of 200 mA with a pulse repetition rate of 648 MHz for the QD-ECMLL without amplification at 20 °C.

Fig. 8
Fig. 8

(a) Autocorrelation trace, (b) optical spectrum, (c) RF spectrum with 200-MHz span, and (d) RF spectrum with 20-GHz span, for a pulse repetition rate of 648 MHz and SOA current of 2500 mA at 20 °C.

Fig. 9
Fig. 9

(a) Peak power (red), gain (black), (b) average power (black), and FOM (red) against SOA current for a 648-MHz repetition rate.

Fig. 10
Fig. 10

The left panel is the TPEF image of 15µm Crimson fluorescent beads obtained at ICFO with the QD-MOPA system. The resulting image was obtained by averaging 10 frames to improve the signal to noise ratio. The right panel is a simplified schematic of the nonlinear microscope setup. L#: lenses; M#: mirror; HM: dichroic mirror; F: bandpass filter; PMT: photomultiplier tube.

Metrics