Abstract

High-throughput real-time optical integrators are of great importance for applications that require ultrafast optical information processing, such as real-time phase reconstruction of ultrashort optical pulses. In many of these applications, integration of wide optical bandwidth signals is required. Unfortunately, conventional all-optical integrators based on passive devices are usually sensitive to the wavelength and bandwidth of the optical carrier. Here, we propose and demonstrate a passive all-optical intensity integrator whose operation is independent of the optical signal wavelength and bandwidth. The integrator is implemented based on modal dispersion in a multimode waveguide. By controlling the launch conditions of the input beam, the device produces a rectangular temporal impulse response. Consequently, a temporal intensity integration of an arbitrary optical waveform input is performed within the rectangular time window. The key advantage of this device is that the integration operation can be performed independent of the input signal wavelength and optical carrier bandwidth. This is preferred in many applications where optical signals of different wavelengths are involved. Moreover, thanks to the use of a relatively short length of multimode waveguide, lower system latency is achieved compared to the systems using long dispersive fibers. To illustrate the versatility of the optical integrator, we demonstrate temporal intensity integration of optical waveforms with different wavelengths and optical carrier bandwidths. Finally, we use this device to perform high-throughput, single-shot, real-time optical phase reconstruction of phase-modulated signals at telecommunications bit rates.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
    [CrossRef] [PubMed]
  2. M. H. Asghari and J. Azaña, “Photonic integrator-based optical memory unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011).
    [CrossRef]
  3. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
    [CrossRef] [PubMed]
  4. J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
    [CrossRef]
  5. Y. Park and J. Azaña, “Ultrafast photonic intensity integrator,” Opt. Lett. 34(8), 1156–1158 (2009).
    [CrossRef] [PubMed]
  6. M. H. Asghari, Y. Park, and J. Azaña, “Photonic intensity integrator with combined high processing speed and long operation time window,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThI2.
  7. E. D. Diebold, N. K. Hon, Z. Tan, J. Chou, T. Sienicki, C. Wang, and B. Jalali, “Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide,” Opt. Express 19(24), 23809–23817 (2011).
    [CrossRef] [PubMed]
  8. A. Shah, C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent optical MIMO (COMIMO),” J. Lightwave Technol. 23(8), 2410–2419 (2005).
    [CrossRef]
  9. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
    [CrossRef] [PubMed]
  10. S. Murshid, B. Grossman, and P. Narakorn, “Spatial domain multiplexing: A new dimension in fiber optic multiplexing,” Opt. Laser Technol. 40(8), 1030–1036 (2008).
    [CrossRef]
  11. U. Levy, H. Kobrinsky, and A. Friesem, “Angular multiplexing for multichannel communication in a single fiber,” IEEE J. Quantum Electron. 17(11), 2215–2224 (1981).
    [CrossRef]
  12. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB10.
  13. S. Liang, C. Zhang, W. Lin, L. Li, C. Li, X. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett. 34(12), 1858–1860 (2009).
    [CrossRef] [PubMed]
  14. A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
    [CrossRef]
  15. F. Li, Y. Park, and J. Azaña, “Single-shot real-time frequency chirp characterization of telecommunication optical signals based on balanced temporal optical differentiation,” Opt. Lett. 34(18), 2742–2744 (2009).
    [CrossRef] [PubMed]

2011

M. H. Asghari and J. Azaña, “Photonic integrator-based optical memory unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011).
[CrossRef]

E. D. Diebold, N. K. Hon, Z. Tan, J. Chou, T. Sienicki, C. Wang, and B. Jalali, “Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide,” Opt. Express 19(24), 23809–23817 (2011).
[CrossRef] [PubMed]

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

2010

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[CrossRef]

2009

2008

R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
[CrossRef] [PubMed]

S. Murshid, B. Grossman, and P. Narakorn, “Spatial domain multiplexing: A new dimension in fiber optic multiplexing,” Opt. Laser Technol. 40(8), 1030–1036 (2008).
[CrossRef]

2005

2000

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

1981

U. Levy, H. Kobrinsky, and A. Friesem, “Angular multiplexing for multichannel communication in a single fiber,” IEEE J. Quantum Electron. 17(11), 2215–2224 (1981).
[CrossRef]

Ahn, T. J.

Asghari, M. H.

M. H. Asghari and J. Azaña, “Photonic integrator-based optical memory unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011).
[CrossRef]

Ayotte, N.

Azaña, J.

M. H. Asghari and J. Azaña, “Photonic integrator-based optical memory unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011).
[CrossRef]

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[CrossRef]

Y. Park and J. Azaña, “Ultrafast photonic intensity integrator,” Opt. Lett. 34(8), 1156–1158 (2009).
[CrossRef] [PubMed]

F. Li, Y. Park, and J. Azaña, “Single-shot real-time frequency chirp characterization of telecommunication optical signals based on balanced temporal optical differentiation,” Opt. Lett. 34(18), 2742–2744 (2009).
[CrossRef] [PubMed]

R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
[CrossRef] [PubMed]

Chou, J.

Chu, S. T.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Diebold, E. D.

Doucet, S.

Feng, X.

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Friesem, A.

U. Levy, H. Kobrinsky, and A. Friesem, “Angular multiplexing for multichannel communication in a single fiber,” IEEE J. Quantum Electron. 17(11), 2215–2224 (1981).
[CrossRef]

Grossman, B.

S. Murshid, B. Grossman, and P. Narakorn, “Spatial domain multiplexing: A new dimension in fiber optic multiplexing,” Opt. Laser Technol. 40(8), 1030–1036 (2008).
[CrossRef]

Hon, N. K.

Hsu, C. J.

Jalali, B.

Kobrinsky, H.

U. Levy, H. Kobrinsky, and A. Friesem, “Angular multiplexing for multichannel communication in a single fiber,” IEEE J. Quantum Electron. 17(11), 2215–2224 (1981).
[CrossRef]

LaRochelle, S.

Levy, U.

U. Levy, H. Kobrinsky, and A. Friesem, “Angular multiplexing for multichannel communication in a single fiber,” IEEE J. Quantum Electron. 17(11), 2215–2224 (1981).
[CrossRef]

Li, C.

Li, F.

Li, L.

Liang, S.

Lin, B.

Lin, W.

Little, B. E.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Morandotti, R.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Moss, D. J.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Murshid, S.

S. Murshid, B. Grossman, and P. Narakorn, “Spatial domain multiplexing: A new dimension in fiber optic multiplexing,” Opt. Laser Technol. 40(8), 1030–1036 (2008).
[CrossRef]

Narakorn, P.

S. Murshid, B. Grossman, and P. Narakorn, “Spatial domain multiplexing: A new dimension in fiber optic multiplexing,” Opt. Laser Technol. 40(8), 1030–1036 (2008).
[CrossRef]

Park, Y.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Y. Park and J. Azaña, “Ultrafast photonic intensity integrator,” Opt. Lett. 34(8), 1156–1158 (2009).
[CrossRef] [PubMed]

F. Li, Y. Park, and J. Azaña, “Single-shot real-time frequency chirp characterization of telecommunication optical signals based on balanced temporal optical differentiation,” Opt. Lett. 34(18), 2742–2744 (2009).
[CrossRef] [PubMed]

R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
[CrossRef] [PubMed]

Pasquazi, A.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

Peccianti, M.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Sayed, A. H.

Shah, A.

Sienicki, T.

Slavík, R.

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Tan, Z.

Tarighat, A.

Wang, C.

Zhang, C.

IEEE J. Quantum Electron.

U. Levy, H. Kobrinsky, and A. Friesem, “Angular multiplexing for multichannel communication in a single fiber,” IEEE J. Quantum Electron. 17(11), 2215–2224 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

M. H. Asghari and J. Azaña, “Photonic integrator-based optical memory unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011).
[CrossRef]

IEEE Photonics J.

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[CrossRef]

J. Lightwave Technol.

Nat. Commun.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Nat. Photonics

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[CrossRef]

Opt. Express

Opt. Laser Technol.

S. Murshid, B. Grossman, and P. Narakorn, “Spatial domain multiplexing: A new dimension in fiber optic multiplexing,” Opt. Laser Technol. 40(8), 1030–1036 (2008).
[CrossRef]

Opt. Lett.

Science

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Other

M. H. Asghari, Y. Park, and J. Azaña, “Photonic intensity integrator with combined high processing speed and long operation time window,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThI2.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the optical integrator. A beam is collimated and focused into the end of a MMF. The beam is tilted by an angle of approximately 15 degrees to shape the temporal impulse response. An intensity mask is also used to block the portion of the beam which excites low-order modes. The light is then detected by a high speed photodiode and oscilloscope. (b) The integrator output waveform generated by launching the input beam on-axis into the center of the fiber facet. (c) The integrator output waveform using an input beam tilted by 15 degrees. (d) The integrator output waveform generated by tilting the input beam by 15 degrees, using an intensity mask and offsetting the fiber in both the x- and y-directions.

Fig. 2
Fig. 2

Experimental demonstration of the wavelength and bandwidth independent operation of the MMF-based optical integrator. A tunable laser is modulated as the pulse source. The optical pulses are transmitted through the MMF based optical integrator. The red curves are the input temporal waveforms and the blue curves are the output. The wavelength of the laser is tuned to 1535nm, 1540nm and 1545nm, respectively, as shown in (a), (b) and (c). Modulated ASE is also used as a wideband source, and the waveform of the integrator’s input and output is shown in (d).

Fig. 3
Fig. 3

Demonstration of optical integration of a WDM signal. (a) Spectrum of the input signal. The three peaks are centered at 1540.5, 1543.7 and 1546.9 nm. (b) Input signal waveform, with each pulse in time corresponding to a different center wavelength. (c) Integral of the WDM signal. The red curve is the simulation result and the blue curve is the experimental result.

Fig. 4
Fig. 4

Demonstration of real-time high-throughput optical phase reconstruction of phase-modulated signals. A CW laser (λ = 1550.02 nm) is phase modulated and transmitted through an edge filter, which serves as a differentiator. The beam is launched into the optical integrator and the phase is reconstructed. (a) The electrical drive signal. (b) Spectrum of the laser and spectral response of the edge filter. (c) Waveform of the output from the edge filter. (d) Waveform of the output from the optical integrator representing the reconstructed phase.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(θ,z)= n=1 a n J 0 ( b n θ θ c ) exp( D b n 2 z θ c ).
a n = 2 J 0 ( b n θ θ c ) θ c 2 J 1 2 ( b n )
Δτ= τ 2 τ 1 n 1 csin θ c n 1 c

Metrics