Abstract

Based on the scattering cancellation technique we suggest a cloak that allows to conceal macroscopic objects, i.e. objects with an optical size comparable to wavelengths in the visible and whose scattering response is dominated by a magnetic dipole contribution. The key idea in our approach is to use a shell of polaritonic spheres around the object to be cloaked. These spheres exhibit an artificial magnetism. In a systematic investigation, where we progressively increase the complexity of the considered structure, we devise the requirements imposed on the shell and outline how it can be implemented with natural available materials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
    [CrossRef]
  2. D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  4. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15, 6314–6323 (2007).
    [CrossRef] [PubMed]
  5. M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
    [CrossRef] [PubMed]
  6. S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
    [CrossRef]
  7. W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [CrossRef]
  8. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [CrossRef] [PubMed]
  9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
    [CrossRef]
  10. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
    [CrossRef] [PubMed]
  11. J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36, 2059–2061 (2011).
    [CrossRef] [PubMed]
  12. T. Ergin, J. Fischer, and M. Wegener, “Optical phase cloaking of 700 nm lightWaves in the far field by a three-dimensional carpet cloak,” Phys. Rev. Lett. 107, 173901 (2011).
    [CrossRef] [PubMed]
  13. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  14. A. Alù and N. Engheta, “Cloaking a sensor, ” Phys. Rev. Lett. 102, 233901 (2009).
    [CrossRef] [PubMed]
  15. A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
    [CrossRef]
  16. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett. 103, 153901 (2009).
    [CrossRef] [PubMed]
  17. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
    [CrossRef]
  18. S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).
  19. A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36, 4479–4481 (2011).
    [CrossRef] [PubMed]
  20. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun., http://dx.doi.org/10.1016/j.optcom.2011.12.037 (2012).
  21. A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
    [CrossRef]
  22. P. Y. Chen and A. Alù, “Atomically-thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
    [CrossRef] [PubMed]
  23. P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett. 99, 191913 (2011).
  24. A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [CrossRef] [PubMed]
  25. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
    [CrossRef]
  26. K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85, 543–545 (2004).
    [CrossRef]
  27. K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
    [CrossRef] [PubMed]
  28. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
    [CrossRef]
  29. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
    [CrossRef] [PubMed]
  30. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [CrossRef]
  31. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
    [CrossRef]
  32. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
    [CrossRef] [PubMed]
  33. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
    [CrossRef]
  34. V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Status Solidi (RRL) 1, 208–210 (2007).
    [CrossRef]
  35. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
    [CrossRef]
  36. K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
    [CrossRef]
  37. A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C 115, 8955–8960 (2011).
    [CrossRef]
  38. X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
    [CrossRef]
  39. R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
    [CrossRef]
  40. S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
    [CrossRef] [PubMed]
  41. C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
    [CrossRef]
  42. C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
    [CrossRef]
  43. W. Challener, I. Sendur, and C. Peng, “Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials,” Opt. Express 11, 3160–3170 (2003).
    [CrossRef] [PubMed]
  44. J.D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1999).
  45. A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE Publication Series, 2000).
  46. M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
    [CrossRef]
  47. D. V. Goia, Z. Crnjak-Orel, and E. Matijevic, “Precipitation and recrystallization of uniform CuCl particles formed by aggregation of nanosize precursors,” Colloid Polymer Sci. 281, 754–759 (2003).
    [CrossRef]

2012 (3)

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[CrossRef]

2011 (12)

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C 115, 8955–8960 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36, 4479–4481 (2011).
[CrossRef] [PubMed]

P. Y. Chen and A. Alù, “Atomically-thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[CrossRef] [PubMed]

A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[CrossRef] [PubMed]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36, 2059–2061 (2011).
[CrossRef] [PubMed]

T. Ergin, J. Fischer, and M. Wegener, “Optical phase cloaking of 700 nm lightWaves in the far field by a three-dimensional carpet cloak,” Phys. Rev. Lett. 107, 173901 (2011).
[CrossRef] [PubMed]

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

2010 (4)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

2009 (6)

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

A. Alù and N. Engheta, “Cloaking a sensor, ” Phys. Rev. Lett. 102, 233901 (2009).
[CrossRef] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[CrossRef]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

2008 (2)

2007 (5)

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15, 6314–6323 (2007).
[CrossRef] [PubMed]

V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Status Solidi (RRL) 1, 208–210 (2007).
[CrossRef]

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

2006 (2)

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

2005 (4)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[CrossRef]

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

2004 (1)

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85, 543–545 (2004).
[CrossRef]

2003 (2)

D. V. Goia, Z. Crnjak-Orel, and E. Matijevic, “Precipitation and recrystallization of uniform CuCl particles formed by aggregation of nanosize precursors,” Colloid Polymer Sci. 281, 754–759 (2003).
[CrossRef]

W. Challener, I. Sendur, and C. Peng, “Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials,” Opt. Express 11, 3160–3170 (2003).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

1951 (1)

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).

1919 (1)

P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett. 99, 191913 (2011).

Aitchison, J. S.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[CrossRef]

Aizpurua, J.

Alù, A.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

P. Y. Chen and A. Alù, “Atomically-thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
[CrossRef]

A. Alù and N. Engheta, “Cloaking a sensor, ” Phys. Rev. Lett. 102, 233901 (2009).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef] [PubMed]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett. 99, 191913 (2011).

Artoni, M.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Bassani, F.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

Bilotti, F.

Botten, L. C.

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Bürgi, T.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C 115, 8955–8960 (2011).
[CrossRef]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

Cabuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Caputo, R.

R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[CrossRef]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Challener, W.

Chantada, L.

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef] [PubMed]

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically-thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[CrossRef] [PubMed]

P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett. 99, 191913 (2011).

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Chipouline, A.

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

Crnjak-Orel, Z.

D. V. Goia, Z. Crnjak-Orel, and E. Matijevic, “Precipitation and recrystallization of uniform CuCl particles formed by aggregation of nanosize precursors,” Colloid Polymer Sci. 281, 754–759 (2003).
[CrossRef]

Cseh, L.

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Cunningham, A.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C 115, 8955–8960 (2011).
[CrossRef]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

De Sio, L.

R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[CrossRef]

Dintinger, J.

R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[CrossRef]

Economou, E. N.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
[CrossRef]

A. Alù and N. Engheta, “Cloaking a sensor, ” Phys. Rev. Lett. 102, 233901 (2009).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Enoch, S.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
[CrossRef] [PubMed]

P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett. 99, 191913 (2011).

Ergin, T.

T. Ergin, J. Fischer, and M. Wegener, “Optical phase cloaking of 700 nm lightWaves in the far field by a three-dimensional carpet cloak,” Phys. Rev. Lett. 107, 173901 (2011).
[CrossRef] [PubMed]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36, 2059–2061 (2011).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Etrich, C.

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Farhat, M.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
[CrossRef] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).

P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett. 99, 191913 (2011).

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Fischer, J.

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36, 2059–2061 (2011).
[CrossRef] [PubMed]

T. Ergin, J. Fischer, and M. Wegener, “Optical phase cloaking of 700 nm lightWaves in the far field by a three-dimensional carpet cloak,” Phys. Rev. Lett. 107, 173901 (2011).
[CrossRef] [PubMed]

Foteinopoulou, S.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

Fowler, A. G.

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

Froufe-Perez, L. S.

Garcia-Etxarri, A.

Goia, D. V.

D. V. Goia, Z. Crnjak-Orel, and E. Matijevic, “Precipitation and recrystallization of uniform CuCl particles formed by aggregation of nanosize precursors,” Colloid Polymer Sci. 281, 754–759 (2003).
[CrossRef]

Gómez-Medina, R.

Grzegorczyk, T. M.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef] [PubMed]

Guenneau, S.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
[CrossRef] [PubMed]

P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett. 99, 191913 (2011).

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Helgert, C.

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Huang, K. C.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85, 543–545 (2004).
[CrossRef]

Jackson, J.D.

J.D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1999).

Joannopoulos, J. D.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85, 543–545 (2004).
[CrossRef]

Justice, J. B.

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

Kanie, K.

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

Kerkhoff, A.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Kildiev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Kong, J. A.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef] [PubMed]

La Rocca, G.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

Lederer, F.

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

Liu, F.

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

López, C.

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Macdonald, J. E.

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

Matijevic, E.

D. V. Goia, Z. Crnjak-Orel, and E. Matijevic, “Precipitation and recrystallization of uniform CuCl particles formed by aggregation of nanosize precursors,” Colloid Polymer Sci. 281, 754–759 (2003).
[CrossRef]

Matsubara, M.

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

McPhedran, R. C.

Mehl, G. H.

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

Melin, K.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Menzel, C.

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Milton, G. W.

Mock, J. J.

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Mojahedi, M.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[CrossRef]

Monti, A.

Moreno, G.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Moroz, A.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

Movchan, A. B.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
[CrossRef] [PubMed]

Mühlig, S.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C 115, 8955–8960 (2011).
[CrossRef]

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).

Muramatsu, A.

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

Nakamura, H.

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

Nicorovici, N. A. P.

Nieto-Vesperinas, M.

Pacholski, C.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Peng, C.

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef] [PubMed]

Pertsch, T.

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

Petschulat, J.

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

Pniewski, J.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

Povinelli, M. L.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85, 543–545 (2004).
[CrossRef]

Rainwater, D.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Rockstuhl, C.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C 115, 8955–8960 (2011).
[CrossRef]

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).

Sáenz, J. J.

Scharf, T.

R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[CrossRef]

Scheeler, S.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

Scheffold, F.

Schuller, J. A.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Sellame, H.

R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[CrossRef]

Sendur, I.

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Sihvola, A.

A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE Publication Series, 2000).

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef] [PubMed]

Simovski, C. R.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Soric, J. C.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Soukoulis, C. M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Toscano, A.

Tretyakov, S. A.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

Umeton, C. P.

R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[CrossRef]

Ungar, G.

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Wegener, M.

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36, 2059–2061 (2011).
[CrossRef] [PubMed]

T. Ergin, J. Fischer, and M. Wegener, “Optical phase cloaking of 700 nm lightWaves in the far field by a three-dimensional carpet cloak,” Phys. Rev. Lett. 107, 173901 (2011).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Wheeler, M. S.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[CrossRef]

Yannopapas, V.

V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Status Solidi (RRL) 1, 208–210 (2007).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

Zeng, X.

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

Zeng, X. B.

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

ACS Nano (2)

P. Y. Chen and A. Alù, “Atomically-thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[CrossRef] [PubMed]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef] [PubMed]

Adv. Mater. (1)

X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater. 21, 1746–1750 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett. 99, 191913 (2011).

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85, 543–545 (2004).
[CrossRef]

Colloid Polymer Sci. (1)

D. V. Goia, Z. Crnjak-Orel, and E. Matijevic, “Precipitation and recrystallization of uniform CuCl particles formed by aggregation of nanosize precursors,” Colloid Polymer Sci. 281, 754–759 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc. 134, 808–811 (2012).
[CrossRef]

J. Opt. (1)

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

J. Phys. Chem. C (1)

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C 115, 8955–8960 (2011).
[CrossRef]

J. Phys.: Condens. Matter (1)

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

Metamaterials (1)

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[CrossRef]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Nature Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

New J. Phys. (1)

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (8)

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[CrossRef]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[CrossRef]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).
[CrossRef]

Phys. Rev. E (2)

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett. (8)

A. Alù and N. Engheta, “Cloaking a sensor, ” Phys. Rev. Lett. 102, 233901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
[CrossRef]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef] [PubMed]

T. Ergin, J. Fischer, and M. Wegener, “Optical phase cloaking of 700 nm lightWaves in the far field by a three-dimensional carpet cloak,” Phys. Rev. Lett. 107, 173901 (2011).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Phys. Status Solidi (RRL) (1)

V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Status Solidi (RRL) 1, 208–210 (2007).
[CrossRef]

Science (3)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Other (3)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun., http://dx.doi.org/10.1016/j.optcom.2011.12.037 (2012).

J.D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1999).

A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE Publication Series, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Decomposition of the scattered field of a dielectric sphere of radius rc = 66 nm and permittivity εc = 8 into the contributions from electromagnetic multipoles. The overall SCS (scattering cross section) is dominated by the magnetic dipolar contribution. (b) Scattering efficiency of the same dielectric obstacle surrounded by a magnetic shell with effective permeability μs = 0.25 and radius rs = 98 nm. A drastic scattering reduction for a finite range of frequencies coinciding with the magnetic resonance of the bare obstacle can be seen. Scattering efficiency (in dB) through the variation of the shell diameter as well as the permeability (c) and the permittivity (d), where we neglected their imaginary parts. Please note that a suitable permeability alone can already significantly suppress the scattering response.

Fig. 2
Fig. 2

Effective permeability (a) and permittivity (b) of a medium consisting of dielectric nanospheres of radius rd = 16 nm made from a material with a high permittivity of εd = 169, and their filling fraction being f = 0.1. At wavelengths beyond the resonance of the permeability, it is clearly shown that μeff < 1 could be achieved coinciding with the range of Fig. 1(b). The inset shows the magnetic resonance which occurs at 425 nm.

Fig. 3
Fig. 3

(a) Numerical calculation of the scattering efficiency for the core shell system as a function of wavelength; red solid line - core-shell system rigorously calculated where the fine details of the structure are accounted for; blue dot-dashed line - core shell system calculated using the effective medium approach (Clausius-Mossotti equation) (Eq. 4). Note the scattering reduction in the wavelengths domain predicted by the theory. The inset shows a schematic of the dielectric sphere to be cloaked surrounded by 17 polaritonic nanospheres with filling fraction f = 0.1, radius rd = 16 nm and a permittivity εd = 169, the axis unit is nm. (b) Different contributions to the scattering response by different electromagnetic multipoles of the structure showing a drastic reduction of the magnetic component around the spectral region of interest. (c) Time averaged amplitude of the electric field distributions in logarithmic scale of the bare dielectric sphere and (d) the cloaked one. The structures are illuminated with a unit amplitude plane wave (405 nm) where incident field propagates parallel to the horizontal plane and the electric field is polarized perpendicular to it (as sketched by the arrows).

Fig. 4
Fig. 4

Effective permittivity (a) and permeability (b) of a medium consisting of copper chloride nanospheres of different radii ranging from 16 nm to 32 nm and showing the possibility of tuning their resonance frequency. The (blue) solid lines are for the real parts while the (green) dashed ones are for the imaginary parts. The red arrows indicate the direction of increasing rd, by steps of 4 nm.

Fig. 5
Fig. 5

Effective permittivity (a) and permeability (b) of the medium made up of CuCl nanospheres of radius rd = 16 nm with filling fraction f = 0.35. This cluster consists of N = 55 polaritonic spheres randomly arranged on top of a dielectric obstacle of size 66 nm and permittivity of 8. Reduced scattering cross section (c) around the low permeability region, when the magnetic dipole moment of the total structure is nil. The region of low scattering efficiency is indicated by the red double arrows. (d) Schematic showing the core-shell cloaking structure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

c n TE ( ω ) = U n TE ( ω ) U n TE ( ω ) + V n TE ( ω ) , c n TM ( ω ) = U n TM ( ω ) U n TM ( ω ) + V n TM ( ω )
U n TM = | j n ( k c r c ) j n ( k s r c ) y n ( k s r c ) 0 [ k c r c j n ( k c r c ) ] / ɛ c [ k s r c j n ( k s r c ) ] / ɛ s [ k s r c y n ( k s r c ) ] / ɛ s 0 0 j n ( k s r s ) y n ( k s r s ) j n ( k 0 r s ) 0 [ k s r s j n ( k s r s ) ] / ɛ s [ k s r s y n ( k s r s ) ] / ɛ s [ k 0 r s j n ( k 0 r s ) ] / ɛ 0 | ,
C sca = 2 π | k 0 | 2 n = 1 n = + ( 2 n + 1 ) [ | c n TE | 2 + | c n TM | 2 ] .
ɛ eff ( ω ) = ɛ h x ( ω ) 3 3 i f T 1 E ( ω ) x ( ω ) 3 + 3 / 2 i f T 1 E ( ω ) , μ eff ( ω ) = μ h x ( ω ) 3 3 i f T 1 H ( ω ) x ( ω ) 3 + 3 / 2 i f T 1 H ( ω )

Metrics