Abstract

It is demonstrated that as-grown e-beam deposited SiOx thin films on fused silica substrates show a second-order nonlinear response that is dependent on film thickness. Using a Maker fringes method the effective nonlinear coefficient for a SiO thin film is estimated to be comparable to that of crystalline quartz. Variation of process parameters has been used to investigate the origin of the nonlinear response. The second-harmonic signal is very sensitive to annealing of the film and can be totally removed by annealing at a few hundred degrees. It is also demonstrated that a retarding grid that traps charged particles between the crucible and the sample reduces the nonlinear signal from a SiO thin film significantly. It is suggested that oriented dipoles arise during deposition due to a negatively charged film from oxygen ions, thus, resulting in a non-centrosymmetric film. Finally, using e-beam lithography, well-defined nonlinear 2D structures can be synthesized, thus opening the door to a new and practical way to create nonlinear structures for planar waveguide technology.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. K. Pedersen, S. I. Bozhevolnyi, J. Arentoft, M. Kristensen, and C. Laurent-Lund, “Second-harmonic scanning optical microscopy of poled silica waveguides,” J. Appl. Phys. 88, 3872–3878 (2000).
    [CrossRef]
  3. M. Guignard, V. Nazabal, J. Troles, F. Smektala, H. Zeghlache, Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Second-harmonic generation of thermally poled chalcogenide glass,” Opt. Express 13, 789–795 (2005).
    [CrossRef] [PubMed]
  4. M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express 13, 4064–4069 (2005).
    [CrossRef] [PubMed]
  5. K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
    [CrossRef]
  6. T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
    [CrossRef]
  7. F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295–1303 (2000).
    [CrossRef]
  8. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett. 18, 693–695 (1993).
    [CrossRef] [PubMed]
  9. Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
    [CrossRef]
  10. Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
    [CrossRef]
  11. G. Myburg and F. D. Auret, “Influence of the electron-beam evaporation rate of PT and the semiconductor carrier density on the characteristics of PT/normal-GAAS schottky contacts.,” J. Appl. Phys. 71, 6172–6176 (1992).
    [CrossRef]
  12. D. Hoffman and D. Leibowitz, “Effect of Substrate Potential on Al2O3 Films Prepared by Electron Beam Evaporation,” J. Vac. Sci. Technol. 9, 326–329 (1972).
    [CrossRef]
  13. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the inter-band region,” Appl. Phys. Lett. 69, 371–373 (1996).
    [CrossRef]
  14. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416–427 (1995).
    [CrossRef]
  15. J. Jerphagnon and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  16. P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
    [CrossRef]
  17. J. Tauc, “Optical properties of non-crystalline solids,” F. Abeles (Ed.), Optical Properties of Solids (North-Holland, Amsterdam, 1972), p. 277.
  18. K. Hagimoto and A. Mito, “Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm,” Appl. Opt. 34, 8276–8282 (1995).
    [CrossRef] [PubMed]
  19. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals.,” Appl. Phys. Lett. 5, 17–19 (1964).
    [CrossRef]
  20. R. W. Boyd, Nonlinear Optics, 3rd Ed. (Elsevier, 2008).
  21. C. Bucci and R. Fieschi, “Ionic Thermoconductivity. Method for the Investigation of Polarization in Insulators,” Phys. Rev. Lett. 12, 16–19 (1964).
    [CrossRef]
  22. SRIM simulation software based on: J. F. Ziegler and J. M. Manoyan, “The Stopping of Ions in Compounds,” Nucl. Instr. Meth. B35, 215–228 (1989).
  23. A. Kameyama, A. Yokotani, and K. Kurosawa, “Identification of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
    [CrossRef]
  24. F. Argalland and A. K. Jonscher, “Dielectric properties of thin films of aluminium oxide and silicon oxide,” Thin Solid Films 2, 185–210 (1968).
    [CrossRef]
  25. H. L. Hampsch, J M. Torkelson, S J. Bethke, and S G. GrubbSecond harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1042 (1990).
    [CrossRef]
  26. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
    [CrossRef]

2012 (1)

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[CrossRef]

2011 (1)

K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
[CrossRef]

2005 (3)

2001 (2)

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
[CrossRef]

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identification of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

2000 (2)

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295–1303 (2000).
[CrossRef]

K. Pedersen, S. I. Bozhevolnyi, J. Arentoft, M. Kristensen, and C. Laurent-Lund, “Second-harmonic scanning optical microscopy of poled silica waveguides,” J. Appl. Phys. 88, 3872–3878 (2000).
[CrossRef]

1998 (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

1996 (1)

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the inter-band region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

1995 (2)

1994 (1)

P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
[CrossRef]

1993 (1)

1992 (1)

G. Myburg and F. D. Auret, “Influence of the electron-beam evaporation rate of PT and the semiconductor carrier density on the characteristics of PT/normal-GAAS schottky contacts.,” J. Appl. Phys. 71, 6172–6176 (1992).
[CrossRef]

1991 (1)

1990 (1)

H. L. Hampsch, J M. Torkelson, S J. Bethke, and S G. GrubbSecond harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1042 (1990).
[CrossRef]

1989 (1)

SRIM simulation software based on: J. F. Ziegler and J. M. Manoyan, “The Stopping of Ions in Compounds,” Nucl. Instr. Meth. B35, 215–228 (1989).

1972 (1)

D. Hoffman and D. Leibowitz, “Effect of Substrate Potential on Al2O3 Films Prepared by Electron Beam Evaporation,” J. Vac. Sci. Technol. 9, 326–329 (1972).
[CrossRef]

1970 (1)

J. Jerphagnon and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

1968 (1)

F. Argalland and A. K. Jonscher, “Dielectric properties of thin films of aluminium oxide and silicon oxide,” Thin Solid Films 2, 185–210 (1968).
[CrossRef]

1964 (2)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals.,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

C. Bucci and R. Fieschi, “Ionic Thermoconductivity. Method for the Investigation of Polarization in Insulators,” Phys. Rev. Lett. 12, 16–19 (1964).
[CrossRef]

Adamietz, F.

Albert, J.

K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
[CrossRef]

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

Arentoft, J.

K. Pedersen, S. I. Bozhevolnyi, J. Arentoft, M. Kristensen, and C. Laurent-Lund, “Second-harmonic scanning optical microscopy of poled silica waveguides,” J. Appl. Phys. 88, 3872–3878 (2000).
[CrossRef]

Argalland, F.

F. Argalland and A. K. Jonscher, “Dielectric properties of thin films of aluminium oxide and silicon oxide,” Thin Solid Films 2, 185–210 (1968).
[CrossRef]

Auret, F. D.

G. Myburg and F. D. Auret, “Influence of the electron-beam evaporation rate of PT and the semiconductor carrier density on the characteristics of PT/normal-GAAS schottky contacts.,” J. Appl. Phys. 71, 6172–6176 (1992).
[CrossRef]

Bethke, S J.

H. L. Hampsch, J M. Torkelson, S J. Bethke, and S G. GrubbSecond harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1042 (1990).
[CrossRef]

Blanchetiere, C.

K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
[CrossRef]

Blum, R.

Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
[CrossRef]

Boure, J.-E.

Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd Ed. (Elsevier, 2008).

Bozhevolnyi, S. I.

K. Pedersen, S. I. Bozhevolnyi, J. Arentoft, M. Kristensen, and C. Laurent-Lund, “Second-harmonic scanning optical microscopy of poled silica waveguides,” J. Appl. Phys. 88, 3872–3878 (2000).
[CrossRef]

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[CrossRef] [PubMed]

Bucci, C.

C. Bucci and R. Fieschi, “Ionic Thermoconductivity. Method for the Investigation of Polarization in Insulators,” Phys. Rev. Lett. 12, 16–19 (1964).
[CrossRef]

Callender, C.L

K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
[CrossRef]

Dussauze, M.

Fargin, E.

Fieschi, R.

C. Bucci and R. Fieschi, “Ionic Thermoconductivity. Method for the Investigation of Polarization in Insulators,” Phys. Rev. Lett. 12, 16–19 (1964).
[CrossRef]

Franzo, G.

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295–1303 (2000).
[CrossRef]

Gan, F.

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
[CrossRef]

Genty, G.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[CrossRef]

Girard, G.

Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
[CrossRef]

Grubb, S G.

H. L. Hampsch, J M. Torkelson, S J. Bethke, and S G. GrubbSecond harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1042 (1990).
[CrossRef]

Guignard, M.

Hagimoto, K.

Hampsch, H. L.

H. L. Hampsch, J M. Torkelson, S J. Bethke, and S G. GrubbSecond harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1042 (1990).
[CrossRef]

Hayden, L. M.

Herman, W. N.

Hirao, K.

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
[CrossRef]

Hoffman, D.

D. Hoffman and D. Leibowitz, “Effect of Substrate Potential on Al2O3 Films Prepared by Electron Beam Evaporation,” J. Vac. Sci. Technol. 9, 326–329 (1972).
[CrossRef]

Hyvrinen, O.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[CrossRef]

Iacona, F.

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295–1303 (2000).
[CrossRef]

Jacob, S.

K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
[CrossRef]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the inter-band region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Jonscher, A. K.

F. Argalland and A. K. Jonscher, “Dielectric properties of thin films of aluminium oxide and silicon oxide,” Thin Solid Films 2, 185–210 (1968).
[CrossRef]

Kamal, A.

Kameyama, A.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identification of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

Kauranen, M.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[CrossRef]

Kazansky, P. G.

Kazansky, P.G.

P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
[CrossRef]

Kristensen, M.

K. Pedersen, S. I. Bozhevolnyi, J. Arentoft, M. Kristensen, and C. Laurent-Lund, “Second-harmonic scanning optical microscopy of poled silica waveguides,” J. Appl. Phys. 88, 3872–3878 (2000).
[CrossRef]

Kudlinski, A.

M. Guignard, V. Nazabal, J. Troles, F. Smektala, H. Zeghlache, Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Second-harmonic generation of thermally poled chalcogenide glass,” Opt. Express 13, 789–795 (2005).
[CrossRef] [PubMed]

Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
[CrossRef]

Kurosawa, K.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identification of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Lahaye, M.

Laurent-Lund, C.

K. Pedersen, S. I. Bozhevolnyi, J. Arentoft, M. Kristensen, and C. Laurent-Lund, “Second-harmonic scanning optical microscopy of poled silica waveguides,” J. Appl. Phys. 88, 3872–3878 (2000).
[CrossRef]

Ledderhof, C.

K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
[CrossRef]

Leibowitz, D.

D. Hoffman and D. Leibowitz, “Effect of Substrate Potential on Al2O3 Films Prepared by Electron Beam Evaporation,” J. Vac. Sci. Technol. 9, 326–329 (1972).
[CrossRef]

Liu, Q.

Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
[CrossRef]

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
[CrossRef]

Manoyan, J. M.

SRIM simulation software based on: J. F. Ziegler and J. M. Manoyan, “The Stopping of Ions in Compounds,” Nucl. Instr. Meth. B35, 215–228 (1989).

Martinelli, G.

M. Guignard, V. Nazabal, J. Troles, F. Smektala, H. Zeghlache, Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Second-harmonic generation of thermally poled chalcogenide glass,” Opt. Express 13, 789–795 (2005).
[CrossRef] [PubMed]

Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals.,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Mito, A.

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the inter-band region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

Mukherjee, N.

Myburg, G.

G. Myburg and F. D. Auret, “Influence of the electron-beam evaporation rate of PT and the semiconductor carrier density on the characteristics of PT/normal-GAAS schottky contacts.,” J. Appl. Phys. 71, 6172–6176 (1992).
[CrossRef]

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[CrossRef] [PubMed]

Narazaki, A.

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
[CrossRef]

Nazabal, V.

Ning, T.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[CrossRef]

Pedersen, K.

K. Pedersen, S. I. Bozhevolnyi, J. Arentoft, M. Kristensen, and C. Laurent-Lund, “Second-harmonic scanning optical microscopy of poled silica waveguides,” J. Appl. Phys. 88, 3872–3878 (2000).
[CrossRef]

Pietarinen, H.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[CrossRef]

Poumellec, B.

Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
[CrossRef]

Quiquempois, Y.

Rodriguez, V.

Russel, P.St.J.

P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
[CrossRef]

Russell, P. St. J.

Simonen, J.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[CrossRef]

Smektala, F.

Smelser, C.W.

K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
[CrossRef]

Spinella, C.

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295–1303 (2000).
[CrossRef]

Tanaka, K.

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
[CrossRef]

Tauc, J.

J. Tauc, “Optical properties of non-crystalline solids,” F. Abeles (Ed.), Optical Properties of Solids (North-Holland, Amsterdam, 1972), p. 277.

Torkelson, J M.

H. L. Hampsch, J M. Torkelson, S J. Bethke, and S G. GrubbSecond harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1042 (1990).
[CrossRef]

Troles, J.

Yadav, K.

K. Yadav, C.L Callender, C.W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayer silica glass structures,” Opt. Express26975–26983 (2011).
[CrossRef]

Yokotani, A.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identification of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

Zeghlache, H.

Zhao, X.

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
[CrossRef]

Ziegler, J. F.

SRIM simulation software based on: J. F. Ziegler and J. M. Manoyan, “The Stopping of Ions in Compounds,” Nucl. Instr. Meth. B35, 215–228 (1989).

Appl. Opt. (1)

Appl. Phys A (1)

Q. Liu, B. Poumellec, R. Blum, G. Girard, J.-E. Boure, A. Kudlinski, and G. Martinelli, “Stability of electron-beam poling in N or Ge-doped H:SiO2 films,” Appl. Phys A 81, 1213 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the inter-band region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals.,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

J. Appl. Phys. (6)

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295–1303 (2000).
[CrossRef]

G. Myburg and F. D. Auret, “Influence of the electron-beam evaporation rate of PT and the semiconductor carrier density on the characteristics of PT/normal-GAAS schottky contacts.,” J. Appl. Phys. 71, 6172–6176 (1992).
[CrossRef]

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identification of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

H. L. Hampsch, J M. Torkelson, S J. Bethke, and S G. GrubbSecond harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037–1042 (1990).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

K. Pedersen, S. I. Bozhevolnyi, J. Arentoft, M. Kristensen, and C. Laurent-Lund, “Second-harmonic scanning optical microscopy of poled silica waveguides,” J. Appl. Phys. 88, 3872–3878 (2000).
[CrossRef]

J. Non-Cryst. Solids (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. (1)

D. Hoffman and D. Leibowitz, “Effect of Substrate Potential on Al2O3 Films Prepared by Electron Beam Evaporation,” J. Vac. Sci. Technol. 9, 326–329 (1972).
[CrossRef]

Nucl. Instr. Meth. (1)

SRIM simulation software based on: J. F. Ziegler and J. M. Manoyan, “The Stopping of Ions in Compounds,” Nucl. Instr. Meth. B35, 215–228 (1989).

Opt. Commun. (2)

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, and F. Gan, “Second-harmonic generation in GeAsS glasses by electron beam irradiation and analysis of the poling mechanism,” Opt. Commun. 198, 187 (2001).
[CrossRef]

P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

C. Bucci and R. Fieschi, “Ionic Thermoconductivity. Method for the Investigation of Polarization in Insulators,” Phys. Rev. Lett. 12, 16–19 (1964).
[CrossRef]

Thin Solid Films (1)

F. Argalland and A. K. Jonscher, “Dielectric properties of thin films of aluminium oxide and silicon oxide,” Thin Solid Films 2, 185–210 (1968).
[CrossRef]

Other (2)

J. Tauc, “Optical properties of non-crystalline solids,” F. Abeles (Ed.), Optical Properties of Solids (North-Holland, Amsterdam, 1972), p. 277.

R. W. Boyd, Nonlinear Optics, 3rd Ed. (Elsevier, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectral and angular dependence of SHG from SiO films. a) The second harmonic signal between 300 nm and 500 nm from a 500-nm thick SiO1.5 film excited by a pump beam at 760 nm. b) Angular dependences of the SHG signal from the SiO thin films with the thickness between 104 nm to 902 nm. On the left hand side and the right hand side, respectively, 1350 nm and 760 nm excitation wavelength were used. Symbols are experimental results and the solid lines are the best fits using Eq. (1). Notice that a factor of 15 has been multiplied to the signal strength on left hand side.

Fig. 2
Fig. 2

The linear optical properties of a 550-nm thick SiO film. a) The measured transmittance (T) and reflection (R) curves of the as-deposited film and after annealing at 440°C for 30 min in a N2 atmosphere. The oscillations are due to interference effects which are included in the model of the absorption coefficient (α). b) The calculated absorption spectra from the data in Fig. 2(a).

Fig. 3
Fig. 3

The SHG signal as a function of film thickness. The stars are the SHG intensities at 57 degrees angle of incidence taken from the right side of Fig. 1(b). The curves are the calculated SHG signal using Eq. (1) with different dependencies on film thickness.

Fig. 4
Fig. 4

The angular and pump energy dependence of the SHG signal. a) The SHG signal measured from an 1.15-mm thick quartz disc presented by blue circles and fitted with the work from [15] represented by at black curve. The green curve is the expected SHG signal from the quartz disc without any Maker fringes. The red squares are the SHG measurements from a 550-nm thick SiO film fitted with Eq. (1). The SiO SHG signal is multiplied by 176. Here λp=760 nm. b) The transmitted SHG from a 550-nm thick SiO film on fused silica as a function of SHG photon energy. The OPO is not tunable in the region around degeneracy at 710 nm corresponding to SHG photon energies around 3.5 eV. This leads to the “hole” in the spectrum at this energy. The solid curve is a fit of a Lorentzian that help to determine the resonance position to ∼3.3 eV.

Fig. 5
Fig. 5

Temperature dependence of SHG SiO films. a) 11 pieces of a 500-nm thick SiO1.5 thin film annealed at different temperatures in a N2 atmosphere. The activation energy was estimated by a linear fit as illustrated in the insert. b) The SHG signal from a 902-nm thick SiO film while annealed to 440°C in an air atmosphere.

Fig. 6
Fig. 6

The SHG signal from two different SiO films prepared with and without a retarding grid. Using a retarding grid reduces the SHG signal by a factor of ∼47 in this case.

Fig. 7
Fig. 7

A sketch illustrating oriented dipoles arising due to a charging of the film during deposition caused by oxygen ions. Drawing inspired from [24]. The sketch is based on a SiO2 structure since is the difficult to represent an amorphous SiO structure.

Fig. 8
Fig. 8

SHG from SiO structures defined by lithography. a) SHG scan from a well-defined structure with 130x100 points recorded with a focused beam from a Ti:Sapphire laser operating at a wavelength of 786 nm. b) The SHG diffracted signal measured from a ∼90-nm thick SiO grating consisting of ∼1.4 μm wide lines that are spaced d ∼3-μm apart, see the inserted SEM image, scale bar is 10 μm wide.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 2 ω γ p = 128 π 3 c A [ t a f 1 γ ] 4 [ t f s 2 p ] 2 [ t s a 2 p ] 2 n 2 2 c 2 2 P ω 2 ( 2 π L λ p ) 2 d eff 2 exp [ 2 ( δ 1 + δ 2 ) ] sin 2 Ψ + sinh 2 Ω Ψ 2 + Ω 2 .
d eff γ p = { 2 d 15 c 1 s 1 c 2 + d 31 c 1 2 s 2 + d 33 s 1 2 s 2 γ p d 31 s 2 γ s .
s m = 1 / n m sin ( θ ) c m = 1 s m 2 , m = 1 , 2 Ψ = ( 2 π L / λ p ) ( n 1 c 1 n 2 c 2 ) Ω = δ 1 δ 2 = ( 2 π L / λ p ) ( n 1 κ 1 / c 1 n 2 κ 2 / c 2 ) .
P 2 ω L β e ( 2 α L )
m λ p / 2 = d ( sin ( θ i ) + sin ( θ m ) ) .

Metrics