Abstract

We propose and demonstrate an optical signal processor performing matrix-vector multiplication, which is composed of laser-modulator array, multiplexer, splitter, microring modulator matrix and photodetector array. 8 × 107 multiplications and accumulations (MACs) per second is implemented at the clock at a clock frequency of 10 MHz. All functional units can be ultimately monolithically integrated on a chip with the development of silicon photonics and an efficient high-performance computing system is expected in the future.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Razavi, “Prospects of CMOS technology for high-speed optical communication circuits,” IEEE J. Solid-state Circuits 2(9), 1135–1145 (2002).
    [CrossRef]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  3. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
    [CrossRef]
  4. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
    [CrossRef]
  5. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kartner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects [Invited],” J. Opt. Netw. 6(1), 63–73 (2007).
    [CrossRef]
  6. J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
    [CrossRef]
  7. D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010).
    [CrossRef]
  8. Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
    [CrossRef] [PubMed]
  9. R. S. Tucker and J. L. Riding, “Optical ring-resonator random-access memories,” J. Lightwave Technol. 26(3), 320–328 (2008).
    [CrossRef]
  10. L. Zhang, M. Geng, L. Yang, L. Jia, H. Tian, P. Chen, T. Wang, and Y. Liu, “A silicon-based integrated optical vector-matrix multiplier,” CN patent #2011/10116741.0.
  11. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
    [CrossRef] [PubMed]
  12. L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, W. Zhu, Y. Liu, L. Jia, Q. Fang, and M. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
    [CrossRef] [PubMed]
  13. M. R. Watts, “Integrated optic vector-matrix multiplier,” US patent #2011/8027587B1.
  14. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [CrossRef]
  15. G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “silicon optical modulator,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  16. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
    [CrossRef]
  17. R. C. Gonzalez and R. E. Wood, Digital Image Processing (Prentice Hall, 2007).
  18. M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).
  19. S. Betti, G. D. Marchis, and E. Iannone, Coherent Optical Communications Systems (Wiley, 1995).
  20. J. W. Goodman, A. R. Dias, and L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2(1), 1–3 (1978).
    [CrossRef] [PubMed]
  21. http://www.thirdwave.de/3w/tech/optical/EnLight256.pdf .
  22. D. E. Tamir, N. T. Shaked, P. J. Wilson, and S. Dolev, “High-speed and low-power electro-optical DSP coprocessor,” J. Opt. Soc. Am. A 26(8), A11–A20 (2009).
    [CrossRef] [PubMed]
  23. R. Q. Ji, L. Yang, L. Zhang, Y. H. Tian, J. F. Ding, H. T. Chen, Y. Y. Lu, P. Zhou, and W. W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
    [CrossRef] [PubMed]
  24. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  25. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [CrossRef] [PubMed]
  26. X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express 20(3), 2507–2515 (2012).
    [CrossRef] [PubMed]
  27. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  28. H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

2010 (7)

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “silicon optical modulator,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

D. E. Tamir, N. T. Shaked, P. J. Wilson, and S. Dolev, “High-speed and low-power electro-optical DSP coprocessor,” J. Opt. Soc. Am. A 26(8), A11–A20 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

2006 (1)

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

2005 (2)

2002 (1)

B. Razavi, “Prospects of CMOS technology for high-speed optical communication circuits,” IEEE J. Solid-state Circuits 2(9), 1135–1145 (2002).
[CrossRef]

1978 (1)

Ahn, J.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Albonesi, D. H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Azaña, J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Barwicz, T.

Beausoleil, R.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Beausoleil, R. G.

Binkert, N.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Bowers, J.

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Byun, H.

Camacho-Aguilera, R.

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H. T.

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Chu, T.

Davis, A.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Dias, A. R.

Ding, J. F.

Dolev, S.

Fang, A.

Fang, Q.

Fattal, D.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

Fauchet, P. M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Fiorentino, M.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Friedman, E. G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Gan, F.

Gardes, F. T.

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “silicon optical modulator,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Geis, M.

Goodman, J. W.

Grein, M.

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Holzwarth, C. W.

Hoyt, J. L.

Hu, Y.

Ippen, E. P.

Ji, R.

Ji, R. Q.

Jia, L.

Jouppi, N.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Kartner, F. X.

Kimerling, L. C.

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[CrossRef] [PubMed]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Kodama, S.

Li, X.

Li, Z.

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[CrossRef] [PubMed]

Liu, Y.

Lu, Y.

Lu, Y. Y.

Lyszczarz, T.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “silicon optical modulator,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

McLaren, M.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Michel, J.

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[CrossRef] [PubMed]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Nelson, N. A.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Olubuyide, O. O.

Orcutt, J. S.

Park, H.

Park, Y.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Popovic, M. A.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rakich, P. T.

Ram, R. J.

Razavi, B.

B. Razavi, “Prospects of CMOS technology for high-speed optical communication circuits,” IEEE J. Solid-state Circuits 2(9), 1135–1145 (2002).
[CrossRef]

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “silicon optical modulator,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Riding, J. L.

Santori, C.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schreiber, R.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Shaked, N. T.

Smith, H. I.

Soref, R.

Spector, S.

Spillane, S.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Stojanovic, V.

Sun, X.

Tamir, D. E.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “silicon optical modulator,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Tian, Y.

Tian, Y. H.

Tucker, R. S.

Vantrease, D.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Watts, M. R.

Wilson, P. J.

Woody, L. M.

Xiao, X.

Xiong, K.

Xu, H.

Xu, Q.

Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
[CrossRef] [PubMed]

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yang, L.

Yoon, J. U.

Yu, J.

Yu, M.

Yu, Y.

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Zhang, L.

Zhou, P.

Zhu, W.

Zhu, W. W.

Appl. Phys., A Mater. Sci. Process. (1)

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

IEEE J. Solid-state Circuits (1)

B. Razavi, “Prospects of CMOS technology for high-speed optical communication circuits,” IEEE J. Solid-state Circuits 2(9), 1135–1145 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

J. Opt. Soc. Am. A (1)

Nat. Commun (1)

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Nat. Photonics (5)

D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010).
[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “silicon optical modulator,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Other (6)

L. Zhang, M. Geng, L. Yang, L. Jia, H. Tian, P. Chen, T. Wang, and Y. Liu, “A silicon-based integrated optical vector-matrix multiplier,” CN patent #2011/10116741.0.

M. R. Watts, “Integrated optic vector-matrix multiplier,” US patent #2011/8027587B1.

R. C. Gonzalez and R. E. Wood, Digital Image Processing (Prentice Hall, 2007).

M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).

S. Betti, G. D. Marchis, and E. Iannone, Coherent Optical Communications Systems (Wiley, 1995).

http://www.thirdwave.de/3w/tech/optical/EnLight256.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the on-chip optical matrix-vector multiplier. The system can implement the matrix-vector multiplication of A·B = C, in which the matrix A is represented by the transmissivity of the M × N microring modulator matrix, the vector B is represented by the output optical power of the N × 1 laser-modulator array, and the result vector C is represented by the optical powers detected by the M × 1 photodetector array. MD, modulator. PD, photodetector.

Fig. 2
Fig. 2

Microscope image of the 4 × 4 microring modulator matrix and amplified image of the PIN modulation region.

Fig. 3
Fig. 3

Experimental setup and transmission spectra for the optical MVM. (a) Experimental setup for the static and dynamic response characterization of the optical MVM. (b) Transmission spectra of the cascaded microring modulators with (red line) and without (black line) forward bias voltages. MD, MZI modulator. PC, polarization controller. OSA, optical spectral analyzer. DUT, device under test. EDFA, erbium doped fiber amplifier. PD, photodetector. OSC, oscilloscope. AFG, arbitrary function generator.

Fig. 4
Fig. 4

Waveforms of the driving voltages and optical output. Voltages applied to the MZI modulators to generate the optical vector, representing the elements of vector B = (b1, b2, b3, b4). Voltages applied to the microring modulator array, representing the elements in the first row of matrix A.

Metrics