Abstract

We demonstrate guiding of cold 85Rb atoms through a 100-micron-diameter hollow core dielectric waveguide using cylindrical hollow modes. We have transported atoms using blue-detuned light in the 1st order, azimuthally-polarized TE01 hollow mode, and the 2nd order hollow modes (HE31, EH11, and HE12), and compared these results with guidance in the red-detuned, fundamental HE11 mode. The blue-detuned hollow modes confine atoms to low intensity along the capillary axis, far from the walls. We determine scattering rates in the guides by directly measuring the effect of recoil on the atoms. We observe higher atom numbers guided using red-detuned light in the HE11 mode, but a 10-fold reduction in scattering rate using the 2nd order modes, which have an r4 radial intensity profile to lowest order. We show that the red-detuned guides can be used to load atoms into the blue-detuned modes when both high atom number and low perturbation are desired.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [CrossRef] [PubMed]
  2. M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
    [CrossRef]
  3. K. Dholakia, “Atom hosepipes,” Contemp. Phys. 39(5), 351–369 (1998).
    [CrossRef]
  4. T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
    [CrossRef] [PubMed]
  5. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
    [CrossRef] [PubMed]
  6. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53(2), R648–R651 (1996).
    [CrossRef] [PubMed]
  7. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
    [CrossRef] [PubMed]
  8. D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, “Guiding laser-cooled atoms in hollow-core fibers,” Phys. Rev. A 61(3), 033411 (2000).
    [CrossRef]
  9. F. K. Fatemi, M. Bashkansky, and S. Moore, “Side-illuminated hollow-core optical fiber for atom guiding,” Opt. Express 13(13), 4890–4895 (2005).
    [CrossRef] [PubMed]
  10. H. S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143(1-3), 25–29 (1997).
    [CrossRef]
  11. N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At. Mol. Opt. Phys. 48, 99–151 (2002).
    [CrossRef]
  12. M. L. Terraciano, S. E. Olson, and F. K. Fatemi, “Temperature dependent photon scattering in blue-detuned optical traps,” Phys. Rev. A 84(2), 025402 (2011).
    [CrossRef]
  13. Y. Song, D. Milam, and W. T. Hill, “Long, narrow all-light atom guide,” Opt. Lett. 24(24), 1805–1807 (1999).
    [CrossRef] [PubMed]
  14. S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Cold-atom confinement in an all-optical dark ring trap,” Phys. Rev. A 76(6), 061404 (2007).
    [CrossRef]
  15. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59(3), R1750–R1753 (1999).
    [CrossRef]
  16. A. Kaplan, M. F. Andersen, T. Grunzweig, and N. Davidson, “Hyperfine spectroscopy of optically trapped atoms,” J. Opt. B Quantum Semiclassical Opt. 7(8), R103–R125 (2005).
    [CrossRef]
  17. M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77(6), 063417 (2008).
    [CrossRef]
  18. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express 18(1), 323–332 (2010).
    [CrossRef] [PubMed]
  19. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  20. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
    [CrossRef]
  21. D. A. Steck, http://steck.us/alkalidata/
  22. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19(25), 25143–25150 (2011).
    [CrossRef] [PubMed]
  23. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
    [CrossRef]
  24. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express 15(20), 13404–13414 (2007).
    [CrossRef] [PubMed]
  25. K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63(4), 043403 (2001).
    [CrossRef]
  26. R. A. Cline, J. D. Miller, M. R. Matthews, and D. J. Heinzen, “Spin relaxation of optically trapped atoms by light scattering,” Opt. Lett. 19(3), 207–209 (1994).
    [CrossRef] [PubMed]
  27. F. K. Fatemi and M. Bashkansky, “Cold atom guidance using a binary spatial light modulator,” Opt. Express 14(4), 1368–1375 (2006).
    [CrossRef] [PubMed]
  28. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
    [CrossRef] [PubMed]
  29. A. A. Ishaaya, C. J. Hensley, B. Shim, S. Schrauth, K. W. Koch, and A. L. Gaeta, “Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers,” Opt. Express 17(21), 18630–18637 (2009).
    [CrossRef] [PubMed]

2011

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, “Temperature dependent photon scattering in blue-detuned optical traps,” Phys. Rev. A 84(2), 025402 (2011).
[CrossRef]

F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19(25), 25143–25150 (2011).
[CrossRef] [PubMed]

2010

2009

A. A. Ishaaya, C. J. Hensley, B. Shim, S. Schrauth, K. W. Koch, and A. L. Gaeta, “Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers,” Opt. Express 17(21), 18630–18637 (2009).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

2008

2007

Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express 15(20), 13404–13414 (2007).
[CrossRef] [PubMed]

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[CrossRef] [PubMed]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Cold-atom confinement in an all-optical dark ring trap,” Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

2006

2005

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

A. Kaplan, M. F. Andersen, T. Grunzweig, and N. Davidson, “Hyperfine spectroscopy of optically trapped atoms,” J. Opt. B Quantum Semiclassical Opt. 7(8), R103–R125 (2005).
[CrossRef]

F. K. Fatemi, M. Bashkansky, and S. Moore, “Side-illuminated hollow-core optical fiber for atom guiding,” Opt. Express 13(13), 4890–4895 (2005).
[CrossRef] [PubMed]

2002

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At. Mol. Opt. Phys. 48, 99–151 (2002).
[CrossRef]

2001

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63(4), 043403 (2001).
[CrossRef]

2000

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, “Guiding laser-cooled atoms in hollow-core fibers,” Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

1999

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59(3), R1750–R1753 (1999).
[CrossRef]

Y. Song, D. Milam, and W. T. Hill, “Long, narrow all-light atom guide,” Opt. Lett. 24(24), 1805–1807 (1999).
[CrossRef] [PubMed]

1998

K. Dholakia, “Atom hosepipes,” Contemp. Phys. 39(5), 351–369 (1998).
[CrossRef]

1997

H. S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143(1-3), 25–29 (1997).
[CrossRef]

1996

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53(2), R648–R651 (1996).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[CrossRef] [PubMed]

1995

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

1994

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Abdolvand, A.

Abraham, E. R. I.

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, “Guiding laser-cooled atoms in hollow-core fibers,” Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

Andersen, M. F.

A. Kaplan, M. F. Andersen, T. Grunzweig, and N. Davidson, “Hyperfine spectroscopy of optically trapped atoms,” J. Opt. B Quantum Semiclassical Opt. 7(8), R103–R125 (2005).
[CrossRef]

Anderson, D. Z.

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, “Guiding laser-cooled atoms in hollow-core fibers,” Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53(2), R648–R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Bashkansky, M.

Biener, G.

Chen, J. S. Y.

Cline, R. A.

Cornell, E. A.

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, “Guiding laser-cooled atoms in hollow-core fibers,” Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53(2), R648–R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Courjon, D.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Davidson, N.

A. Kaplan, M. F. Andersen, T. Grunzweig, and N. Davidson, “Hyperfine spectroscopy of optically trapped atoms,” J. Opt. B Quantum Semiclassical Opt. 7(8), R103–R125 (2005).
[CrossRef]

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At. Mol. Opt. Phys. 48, 99–151 (2002).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59(3), R1750–R1753 (1999).
[CrossRef]

Dholakia, K.

K. Dholakia, “Atom hosepipes,” Contemp. Phys. 39(5), 351–369 (1998).
[CrossRef]

Donley, E. A.

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53(2), R648–R651 (1996).
[CrossRef] [PubMed]

Euser, T. G.

Fatemi, F. K.

F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19(25), 25143–25150 (2011).
[CrossRef] [PubMed]

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, “Temperature dependent photon scattering in blue-detuned optical traps,” Phys. Rev. A 84(2), 025402 (2011).
[CrossRef]

F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express 18(1), 323–332 (2010).
[CrossRef] [PubMed]

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77(6), 063417 (2008).
[CrossRef]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Cold-atom confinement in an all-optical dark ring trap,” Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

F. K. Fatemi and M. Bashkansky, “Cold atom guidance using a binary spatial light modulator,” Opt. Express 14(4), 1368–1375 (2006).
[CrossRef] [PubMed]

F. K. Fatemi, M. Bashkansky, and S. Moore, “Side-illuminated hollow-core optical fiber for atom guiding,” Opt. Express 13(13), 4890–4895 (2005).
[CrossRef] [PubMed]

Friedman, N.

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At. Mol. Opt. Phys. 48, 99–151 (2002).
[CrossRef]

Gaeta, A. L.

Gehm, M. E.

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63(4), 043403 (2001).
[CrossRef]

Granade, S. R.

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63(4), 043403 (2001).
[CrossRef]

Grimm, R.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Grosjean, T.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Grunzweig, T.

A. Kaplan, M. F. Andersen, T. Grunzweig, and N. Davidson, “Hyperfine spectroscopy of optically trapped atoms,” J. Opt. B Quantum Semiclassical Opt. 7(8), R103–R125 (2005).
[CrossRef]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Hasman, E.

Heinzen, D. J.

Hensley, C. J.

Hill, W. T.

Hofferberth, S.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Ishaaya, A. A.

Ito, H.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[CrossRef] [PubMed]

Jhe, W.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[CrossRef] [PubMed]

Kaminski, C. F.

Kaplan, A.

A. Kaplan, M. F. Andersen, T. Grunzweig, and N. Davidson, “Hyperfine spectroscopy of optically trapped atoms,” J. Opt. B Quantum Semiclassical Opt. 7(8), R103–R125 (2005).
[CrossRef]

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At. Mol. Opt. Phys. 48, 99–151 (2002).
[CrossRef]

Khaykovich, L.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59(3), R1750–R1753 (1999).
[CrossRef]

Kleiner, V.

Knize, R. J.

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[CrossRef] [PubMed]

Koch, K. W.

Lee, K. I.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[CrossRef] [PubMed]

Liang, Q.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Matthews, M. R.

Milam, D.

Miller, J. D.

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Moore, S.

Müller, D.

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, “Guiding laser-cooled atoms in hollow-core fibers,” Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

Nakata, T.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[CrossRef] [PubMed]

Niv, A.

Nold, J.

O’Hara, K. M.

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63(4), 043403 (2001).
[CrossRef]

Oh, E.

Ohtsu, M.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[CrossRef] [PubMed]

Olson, S. E.

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, “Temperature dependent photon scattering in blue-detuned optical traps,” Phys. Rev. A 84(2), 025402 (2011).
[CrossRef]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Cold-atom confinement in an all-optical dark ring trap,” Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Ozeri, R.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59(3), R1750–R1753 (1999).
[CrossRef]

Park, D.

Peyronel, T.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Pilloff, H. S.

H. S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143(1-3), 25–29 (1997).
[CrossRef]

Renn, M. J.

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53(2), R648–R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Russell, P. St. J.

Sabac, A.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Sakaki, K.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[CrossRef] [PubMed]

Scharrer, M.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Schrauth, S.

Shim, B.

Song, Y.

Takekoshi, T.

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[CrossRef] [PubMed]

Terraciano, M. L.

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, “Temperature dependent photon scattering in blue-detuned optical traps,” Phys. Rev. A 84(2), 025402 (2011).
[CrossRef]

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77(6), 063417 (2008).
[CrossRef]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Cold-atom confinement in an all-optical dark ring trap,” Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

Thomas, J. E.

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63(4), 043403 (2001).
[CrossRef]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Vuletic, V.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Whyte, G.

Wieman, C. E.

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53(2), R648–R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Yirmiyahu, Y.

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Adv. At. Mol. Opt. Phys.

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At. Mol. Opt. Phys. 48, 99–151 (2002).
[CrossRef]

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Contemp. Phys.

K. Dholakia, “Atom hosepipes,” Contemp. Phys. 39(5), 351–369 (1998).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt.

A. Kaplan, M. F. Andersen, T. Grunzweig, and N. Davidson, “Hyperfine spectroscopy of optically trapped atoms,” J. Opt. B Quantum Semiclassical Opt. 7(8), R103–R125 (2005).
[CrossRef]

Opt. Commun.

H. S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143(1-3), 25–29 (1997).
[CrossRef]

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63(4), 043403 (2001).
[CrossRef]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Cold-atom confinement in an all-optical dark ring trap,” Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59(3), R1750–R1753 (1999).
[CrossRef]

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, “Temperature dependent photon scattering in blue-detuned optical traps,” Phys. Rev. A 84(2), 025402 (2011).
[CrossRef]

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A 77(6), 063417 (2008).
[CrossRef]

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, “Guiding laser-cooled atoms in hollow-core fibers,” Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53(2), R648–R651 (1996).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

Phys. Rev. Lett.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[CrossRef] [PubMed]

Other

D. A. Steck, http://steck.us/alkalidata/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup. (b) Beam profiles at the output of the hollow guide. Beam cross-sections at the guide output (c) and source MOT location (d). Plots also show the optical potential of the n = 0 (red), n = 1 (black) and n = 2 (blue) modes in units of the Doppler temperature Td = ħΓ/2 for Δ = 1 nm and 100 mW of input power. The gray shaded area in (c) represents the glass region of the capillary (core diameter = 100 μm).

Fig. 2
Fig. 2

Comparison of atom flux for the different beam types. (a) Red-detuned HE11 mode; (b) blue-detuned TE01 mode; (c) blue-detuned n = 2 mode. We have used two different guide powers for each case as indicated. Arrows indicate Δg, the detuning at which the peak scattering force equals the force of gravity. Signals are normalized for each beam type independently; relative atom numbers are discussed in the text. Note that the detuning values for n = 0 (red-detuning) are negative.

Fig. 3
Fig. 3

Integrated atom flux through the end of the capillary guide as a function of time. Plots are shown for red-detuned, n = 0 guidance at different detunings. Dashed lines are fits using an error function described in the text. For clarity, error bars are not shown, but are approximately the same size as the symbols for Δ = −1.2 nm, −0.58 nm, and −0.44 nm. For Δ = −0.31, reduced atom flux gave error bars ~20%.

Fig. 4
Fig. 4

Scattering rate versus detuning for the fundamental red-detuned beam (red circles), TE01 blue-detuned mode (blue squares), and second excited mode (black diamonds). Fits are shown as dashed lines. The solid black curve is the calculated scattering rate at the peak intensity.

Fig. 5
Fig. 5

Guided atom number as a function of extinction time, Toff, of the red-detuned guide. When the blue-detuned beam is not present (red points) the atoms quickly escape to the capillary walls. When the blue-detuned beam is present to support the atoms (blue points), the atoms can be later recaptured by the red-detuned guide even for long extinction times.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I n (r)= P 0 π [ J n ( u n r a ) a J n+1 ( u n ) ] 2
U(r)= ΓI(r) 24 I s ( Γ Δ+ Δ LS + 2Γ Δ )
Γ SP = Γ 12 ( Γ Δ ) 2 I AVG I s
P(v)dv=Cexp( M v 2 2kT )dv
N(t)=A+Berf( t t 0 τ )

Metrics