Abstract

The distributed vibration or dynamic strain information can be obtained using time-resolved optical frequency-domain reflectometry. Time-domain information is resolved by measuring Rayleigh backscatter spectrum in different wavelength ranges which fall in successive time sequence due to the linear wavelength sweep of the tunable laser source with a constant sweeping rate. The local Rayleigh backscatter spectrum shift of the vibrated state with respect to that of the non-vibrated state in time sequence can be used to determine dynamic strain information at a specific position along the fiber length. Standard single-mode fibers can be used as sensing head, while the measurable frequency range of 0–32 Hz with the spatial resolution of 10 cm can be achieved up to the total length of 17 m.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981).
    [CrossRef] [PubMed]
  2. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16, 10240–10247 (2008).
    [CrossRef] [PubMed]
  3. J. C. Juarez and H. F. Taylor, “Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system,” Opt. Lett. 30, 3284–3286 (2005).
    [CrossRef]
  4. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 232081–2087 (2005).
    [CrossRef]
  5. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46, 1968–1971 (2007).
    [CrossRef] [PubMed]
  6. Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
    [CrossRef]
  7. Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
    [CrossRef]
  8. E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE 1586, 46–52 (1991).
    [CrossRef]
  9. S. J. Russell, K. R. C. Brady, and J. P. Dakin, “Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer,” J. Lightwave Technol. 19, 205–213 (2001).
    [CrossRef]
  10. Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
    [CrossRef]
  11. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37, 1735–1740 (1998).
    [CrossRef]
  12. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
    [CrossRef] [PubMed]
  13. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interfeometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.
  14. M. Froggatt, D. K. Gifford, S. T. Kreger, M. S. Wolfe, and B. J. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC5.
  15. R. G. Duncan, B. J. Soller, D. K. Gifford, S. T. Kreger, R. J. Seeley, A. K. Sang, M. S. Wolfe, and M. E. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” presented at the Joint Conference on Aging Aircraft (2007). http://www.lunatechnologies.com/applications/OFDR-Based-Distributed-Sensing.pdf

2012 (1)

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

2011 (1)

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

2008 (2)

Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16, 10240–10247 (2008).
[CrossRef] [PubMed]

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

2007 (1)

2005 (3)

2001 (1)

1998 (1)

1991 (1)

E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE 1586, 46–52 (1991).
[CrossRef]

1981 (1)

Bao, X.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16, 10240–10247 (2008).
[CrossRef] [PubMed]

Brady, K. R. C.

Chen, L.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

Choi, K. N.

Dakin, J. P.

Froggatt, M.

M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37, 1735–1740 (1998).
[CrossRef]

M. Froggatt, D. K. Gifford, S. T. Kreger, M. S. Wolfe, and B. J. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC5.

Froggatt, M. E.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
[CrossRef] [PubMed]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interfeometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Gifford, D. K.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
[CrossRef] [PubMed]

M. Froggatt, D. K. Gifford, S. T. Kreger, M. S. Wolfe, and B. J. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC5.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interfeometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Juarez, J. C.

Kreger, S. T.

M. Froggatt, D. K. Gifford, S. T. Kreger, M. S. Wolfe, and B. J. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC5.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interfeometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Liu, D.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Liu, H.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Maier, E. W.

Moore, J.

Qin, Z.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

Rogers, A. J.

Russell, S. J.

Soller, B. J.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
[CrossRef] [PubMed]

M. Froggatt, D. K. Gifford, S. T. Kreger, M. S. Wolfe, and B. J. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC5.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interfeometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Sun, Q.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Taylor, H. F.

Udd, E.

E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE 1586, 46–52 (1991).
[CrossRef]

Wang, J.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Wolfe, M. S.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
[CrossRef] [PubMed]

M. Froggatt, D. K. Gifford, S. T. Kreger, M. S. Wolfe, and B. J. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC5.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interfeometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Zhang, Z.

Zhu, T.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (2)

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE 1586, 46–52 (1991).
[CrossRef]

Other (3)

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interfeometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

M. Froggatt, D. K. Gifford, S. T. Kreger, M. S. Wolfe, and B. J. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC5.

R. G. Duncan, B. J. Soller, D. K. Gifford, S. T. Kreger, R. J. Seeley, A. K. Sang, M. S. Wolfe, and M. E. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” presented at the Joint Conference on Aging Aircraft (2007). http://www.lunatechnologies.com/applications/OFDR-Based-Distributed-Sensing.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experiment Setup. TLS: tunable laser source; DAQ: data acquisition; OC: optical coupler; PC: polarization controller; PD: photodetector; PBS: polarization beam splitter; FUT: fiber under test; PZT: Lead zirconade titanate.

Fig. 2
Fig. 2

Flow chart of the dynamic strain measurement with optical frequency-domain reflectometry. TLS: tunable laser source; FFT: fast Fourier transform.

Fig. 3
Fig. 3

Rayleigh backscatter as a function of fiber length with the TLS sweeping range of (a) 50 nm and (b) 0.625 nm. Both the curves are vector summed from the “s” and “p” components and a 3.8 mm filter is used for both cases.

Fig. 4
Fig. 4

Examples of Rayleigh backscatter spectrum shift at different times with (a) 20 cm and (b) 10 cm spatial resolution at the vibrated position of 4.26 m when a 5 Hz sinusoidal voltage is applied to the PZT tube.

Fig. 5
Fig. 5

Time-domain Rayleigh backscatter spectrum shift (applied strain) at vibrated position of 4.26 m with (a) 20 cm (b) 10 cm spatial resolution; non-vibrated position of 4.48 m with (c) 20 cm (d) 10 cm spatial resolution when a 5 Hz sinusoidal voltage is applied to the PZT tube.

Fig. 6
Fig. 6

Time-domain Rayleigh backscatter spectrum shift (applied strain) at vibrated position of 4.26 m with 10 cm spatial resolution when a (a) 10 Hz and (b) 20 Hz sinusoidal voltage is applied to the PZT tube.

Fig. 7
Fig. 7

Contour plot of the power spectrum (log unit) of the time-domain strain signal along the fiber length for vibration frequency of (a) 5 Hz, (b) 10 Hz, and (c) 20 Hz, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L max = c τ g 4 n g ,
Δ L λ 2 2 n g Δ λ TLS ,

Metrics