Abstract

We theoretically investigate mid-IR absorption enhancement with a SiC one-dimensional photonic crystal (PC) microstructure at the frequency regime of the phonon-polariton band gap, where efficient absorption is unattainable in the bulk material. Our study reveals an intricate relationship between absorption efficiency and the energy velocity of light propagation, that is far more complex than hitherto believed. In particular, our findings suggest that absorption peaks away from the photonic-crystal band edge where energy velocity is minimum. While efficient absorption is still associated with a slow-light mode, the latter is faster by at least an order of magnitude in comparison to the bulk material. Moreover, our calculations suggest that absorption becomes optimal when light gradually slow downs as it enters the PC. Relying on this insight, we achieved near-perfect absorption around the phonon-polariton mid-gap frequency with a PC with a suitably terminated end face. We further demonstrate that the near-perfect absorptive property can be tuned with the incident light angle, to be polarization insensitive or polarization selective. We believe our proposed non-metallic paradigm opens up a new route for harnessing infrared absorption with semiconductor and ionic-crystal materials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaics,” Nat. Mat. 9, 205–213 (2010).
    [CrossRef]
  2. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
    [CrossRef]
  3. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chadran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
    [CrossRef] [PubMed]
  4. G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
    [CrossRef]
  5. R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat. 21, 3504–3509 (2009).
    [CrossRef]
  6. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
    [CrossRef]
  7. Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [CrossRef] [PubMed]
  8. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-indepedent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [CrossRef] [PubMed]
  9. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
    [CrossRef]
  10. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids 354, 2757–2762 (2008).
    [CrossRef]
  11. S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
    [CrossRef] [PubMed]
  12. C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
    [CrossRef]
  13. L. Hutchinson, “Breast cancer: Challenges, controversies, breakthroughs,” Nat. Rev. Clin. Onco. 7, 669–670 (2010).
    [CrossRef]
  14. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538–1541 (2003).
    [CrossRef]
  15. S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
    [CrossRef]
  16. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
    [CrossRef]
  17. J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photon. Technol. Lett. 24, 31–33 (2012).
    [CrossRef]
  18. C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, 2005).
  19. J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
    [CrossRef] [PubMed]
  20. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  21. P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422 (2007).
    [CrossRef]
  22. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15, 4253–4267 (2007).
    [CrossRef] [PubMed]
  23. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
    [CrossRef]
  24. P. Yeh, Optical waves in layered media (Wiley-Interscience, 2005).
  25. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media 1. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [CrossRef]
  26. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).
  27. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002).
    [CrossRef]
  28. G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A: Pure Appl. Opt. 8, 973–980 (2006).
    [CrossRef]
  29. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 233–245 (1970).
    [CrossRef]
  30. M. Bergmair, M. Huber, and K. Hingerl, “Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals,” Appl. Phys. Lett. 89, 081907 (2006).
    [CrossRef]
  31. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
    [CrossRef]
  32. S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
    [CrossRef]

2012 (2)

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photon. Technol. Lett. 24, 31–33 (2012).
[CrossRef]

2011 (4)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-indepedent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

2010 (3)

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

L. Hutchinson, “Breast cancer: Challenges, controversies, breakthroughs,” Nat. Rev. Clin. Onco. 7, 669–670 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaics,” Nat. Mat. 9, 205–213 (2010).
[CrossRef]

2009 (5)

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
[CrossRef]

R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat. 21, 3504–3509 (2009).
[CrossRef]

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chadran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids 354, 2757–2762 (2008).
[CrossRef]

2007 (2)

S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15, 4253–4267 (2007).
[CrossRef] [PubMed]

P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422 (2007).
[CrossRef]

2006 (2)

G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A: Pure Appl. Opt. 8, 973–980 (2006).
[CrossRef]

M. Bergmair, M. Huber, and K. Hingerl, “Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals,” Appl. Phys. Lett. 89, 081907 (2006).
[CrossRef]

2005 (3)

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
[CrossRef]

2004 (1)

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

2003 (2)

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538–1541 (2003).
[CrossRef]

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002).
[CrossRef]

1977 (1)

1970 (1)

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 233–245 (1970).
[CrossRef]

Aleese, L. M.

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

Algora, C.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Allen, G.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photon. Technol. Lett. 24, 31–33 (2012).
[CrossRef]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-indepedent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaics,” Nat. Mat. 9, 205–213 (2010).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-indepedent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Bakker, J. M.

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

Barnard, E.

R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat. 21, 3504–3509 (2009).
[CrossRef]

Barnard, E. S.

Barve, A.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Bergmair, M.

M. Bergmair, M. Huber, and K. Hingerl, “Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals,” Appl. Phys. Lett. 89, 081907 (2006).
[CrossRef]

Biswas, R.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-indepedent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat. 21, 3504–3509 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chadran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Cada, M.

G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A: Pure Appl. Opt. 8, 973–980 (2006).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422 (2007).
[CrossRef]

Chadran, A.

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Cui, Y.

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Dutton, R. W.

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

Economou, E. N.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

El-Kady, I.

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chadran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422 (2007).
[CrossRef]

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

Fang, N. X.

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-indepedent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Fleming, J. G.

Foteinopoulou, S.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15, 4253–4267 (2007).
[CrossRef] [PubMed]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
[CrossRef]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Galiana, B.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids 354, 2757–2762 (2008).
[CrossRef]

Gunapala, S. D.

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
[CrossRef]

Guven, K.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

He, S.

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

Hill, C. J.

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
[CrossRef]

Hingerl, K.

M. Bergmair, M. Huber, and K. Hingerl, “Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals,” Appl. Phys. Lett. 89, 081907 (2006).
[CrossRef]

Ho, K. M.

Hong, C. S.

Hsu, C. M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Huber, M.

M. Bergmair, M. Huber, and K. Hingerl, “Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals,” Appl. Phys. Lett. 89, 081907 (2006).
[CrossRef]

Hung Fung, K.

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

Hutchinson, L.

L. Hutchinson, “Breast cancer: Challenges, controversies, breakthroughs,” Nat. Rev. Clin. Onco. 7, 669–670 (2010).
[CrossRef]

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids 354, 2757–2762 (2008).
[CrossRef]

Jain, H.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids 354, 2757–2762 (2008).
[CrossRef]

Jang, W. Y.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Jin, Y.

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Kafesaki, M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

Keo, S. A.

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, 2005).

Krishna, S.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Ku, Z. Y.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Lee, S. J.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Li, Z. Y.

Lin, S. Y.

Liu, J.

R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat. 21, 3504–3509 (2009).
[CrossRef]

Loudon, R.

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 233–245 (1970).
[CrossRef]

Ma, H.

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

Martinez, L. J.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Mason, J. A.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photon. Technol. Lett. 24, 31–33 (2012).
[CrossRef]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Meijer, G.

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Montoya, J.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Moussa, R.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Mumolo, J. M.

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
[CrossRef]

Noh, S. K.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Ozbay, E.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Pala, R. A

R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat. 21, 3504–3509 (2009).
[CrossRef]

Pantano, C. G.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids 354, 2757–2762 (2008).
[CrossRef]

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Podolskiy, V. A.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photon. Technol. Lett. 24, 31–33 (2012).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaics,” Nat. Mat. 9, 205–213 (2010).
[CrossRef]

Postigo, P. A.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Prieto, I.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Qiu, M.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

Reisinger, A.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Rey-Stolle, I.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Ruan, Z.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

Ruppin, R.

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002).
[CrossRef]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

Schriemer, H. P.

G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A: Pure Appl. Opt. 8, 973–980 (2006).
[CrossRef]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[CrossRef]

Soibel, A.

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
[CrossRef]

Soukoulis, C. M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
[CrossRef]

Sundaram, M.

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Taylor, J.

G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A: Pure Appl. Opt. 8, 973–980 (2006).
[CrossRef]

Ting, D. Z.

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
[CrossRef]

Torrese, G.

G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A: Pure Appl. Opt. 8, 973–980 (2006).
[CrossRef]

Tuttle, G.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Vandenbem, C.

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chadran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

Vigneron, J. P.

von Helden, G.

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Wasserman, D.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photon. Technol. Lett. 24, 31–33 (2012).
[CrossRef]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[CrossRef]

White, J.

R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat. 21, 3504–3509 (2009).
[CrossRef]

White, J. S.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Xiao, S.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

Xu, J.

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Yariv, A.

Yeh, P.

Yu, C.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids 354, 2757–2762 (2008).
[CrossRef]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chadran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

Zhang, L.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Adv. Mat. (1)

R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat. 21, 3504–3509 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[CrossRef]

M. Bergmair, M. Huber, and K. Hingerl, “Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals,” Appl. Phys. Lett. 89, 081907 (2006).
[CrossRef]

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photon. Technol. Lett. 24, 31–33 (2012).
[CrossRef]

Infrared. Phys. Tech. (1)

C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech. 52, 348–352 (2009).
[CrossRef]

J. Appl. Phys. (1)

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

J. Non-Crystalline Solids (1)

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids 354, 2757–2762 (2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A: Pure Appl. Opt. 8, 973–980 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 233–245 (1970).
[CrossRef]

Nano Lett. (2)

Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Nat. Commun. (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-indepedent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Nat. Mat. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaics,” Nat. Mat. 9, 205–213 (2010).
[CrossRef]

Nat. Rev. Clin. Onco. (1)

L. Hutchinson, “Breast cancer: Challenges, controversies, breakthroughs,” Nat. Rev. Clin. Onco. 7, 669–670 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002).
[CrossRef]

Phys. Rev. B (4)

P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422 (2007).
[CrossRef]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

Other (4)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, 2005).

P. Yeh, Optical waves in layered media (Wiley-Interscience, 2005).

K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Normal incidence at the 1D SiC-air PC structure (first two unit cells are shown). The geometric and material parameters of the PC system are indicated. (b) Absorptance versus free space wavelength, λfree, for a 20-unit-cell SiC-air PC with filling ratio 0.07 (red dashed lines), 0.15 (green dotted-dashed lines) and 0.30 (blue dotted lines) (a=10.3 μm). The absorptance of a bulk SiC block of thickness equal to 14.42 μm is shown for reference as a black solid line. The magenta vertical lines encompass the SiC phonon-polariton spectral gap region. (c) Same as in (b), but for reflectance versus the free space wavelength.

Fig. 2
Fig. 2

(a) Band structure of the SiC PC with a filling ratio 0.07 within the SiC phonon-polariton gap spectrum. The left (right) panel depicts the modal free space wavelength λfree, with respect to the real (imaginary) part of the Bloch wavevector q (dimensionless units). We find an allowed propagation band for the SiC PC, with spectral limits designated with the shaded region in the figure. (b) Corresponding spectral response of the averaged normalized intensity at the first (black line), second (red line) and third (green line) SiC layer for the semi-infinite SiC-air PC. (c) Energy velocity in the infinite PC structure averaged within the SiC layer (red solid line). Energy velocity within bulk SiC is shown for comparison (green dashed line). The blue solid vertical line designates the PC band-gap edge, while the vertical blue dotted line designates the free space wavelength where absorptance peaks [see Fig. 1(b)].

Fig. 3
Fig. 3

(a) Energy velocity at the interfacial SiC layer as a function of position, x, for the periodic PC at 10.9 μm free space wavelength. (b) The same but for a terminated PC, with a half-sized SiC end face at 11.4 μm free space wavelength (red dashed line). The black solid line represents the corresponding periodic PC case. Note, in all cases x=0 was taken at the front face of the second PC cell.

Fig. 4
Fig. 4

(a) Normal incidence at the 1D SiC-air PC, with the first SiC layer truncated. The geometric parameters of the PC system, and truncated layer, are indicated. (b) Absorptance versus free space wavelength, λfree, and termination ratio, tratio = dint/d1, for a twenty-cell SiC-air PC with a filling ratio 0.07. The two vertical white lines designate the phonon-polariton gap region. (c) Same as in (b) plotted for the case with tratio=0.5. The inset shows the absorptance versus the number of total cells, N, for the peak wavelength of 11.4 μm.

Fig. 5
Fig. 5

Spectral response of the averaged normalized intensity, Ienha at the first (black line), second (red line) and third (green line) SiC layer for the semi-infinite truncated SiC PC with tratio = 0.5. The result for the first layer of the corresponding full periodic PC is also shown as dashed blue lines.

Fig. 6
Fig. 6

(a) TE-polarization incidence on the truncated PC design (b) TH-polarization incidence on the truncated PC design

Fig. 7
Fig. 7

Absorptance versus incident angle, θI and free space wavelength λfree for TE-polarization (figures in the left) and TH-polarization (figures in the right) for different termination ratios: tratio=0.5 in (a) and (b), tratio=1.0 (implying a fully periodic PC) in (c) and (d) and tratio=0.25 in (e) and (f)

Fig. 8
Fig. 8

(a) Polarization insensitive absorptance when incident angle is 30 deg. (yellow shaded region) (b) Polarization selective absorptance when incident angle is 65 deg. (cyan region for a TE-mode absorber and salmon region for a TH-mode absorber). In all cases, the black solid and dashed green lines represent the absorptance for the TE- and TH-modes respectively, while the red dashed and blue dotted represent the reflectance for TE- and TH-modes respectively.

Fig. 9
Fig. 9

Energy velocity, ve along the propagation direction x versus free space wavelength, λfree for the infinite PC, with a non-zero wave vector along z [defined in Fig. 1(a)], kz. In (a), (b) kz corresponds to the mode that couples at an incident angle of 30 deg. and 65 deg. respectively. In all cases, the solid black line represents the TE polarization result and the dashed red lines represents the TH polarization result.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ɛ 1 ( ω ) = ɛ ( 1 + ω L 2 ω T 2 ω T 2 ω 2 i ω Γ )
I enha = 1 I 0 1 d 1 0 d 1 | E y ( x ) | 2 d x ,
v e = < S ¯ x > < U > = 1 2 0 d 1 Re [ E y ( x ) H z * ( x ) ] d x 1 4 0 d 1 [ ɛ 0 ( ɛ 1 + 2 ω ɛ 1 Γ ) | E y ( x ) | 2 + μ 0 | H z ( x ) | 2 ] d x
α = 1 2 [ ( 1 + χ ) + ( 1 χ ) r ] ,
β = 1 2 [ ( 1 χ ) + ( 1 + χ ) r ] ,
v e , int = 2 c ( 1 R ) ( ɛ fac + 1 ) ( 1 + R ) + 2 Re ( r ) ( ɛ fac 1 ) ,
ɛ fac = ɛ 1 + 2 ω ɛ 1 Γ ,
v e , int ( R = 0 ) = 2 c ɛ fac + 1
( d v e d x ) int = v e , int ɛ 1 ω c [ 1 + R + 2 Re ( r ) 1 R + 2 1 R 4 ω Γ Im ( r ) ( ɛ fac + 1 ) ( 1 + R ) + 2 Re ( r ) ( ɛ fac 1 ) ]
( d v e d x ) int ( R = 0 ) = v e , int ɛ 1 ω c [ 1 + 2 ɛ fac + 1 ] < 0

Metrics