Abstract

A low loss graded index polymer optical fiber (GI POF) with a wide wavelength range around 650 nm is fabricated using a copolymer of methyl methacrylate and pentafluorophenyl methacrylate as a polymer matrix. Dopant hydrophobicity similar to that of the polymer matrix is an important factor in maintaining the low loss of the GI POF. No loss increment is observed under damp heat conditions of 75°C and 85% relative humidity when using 9-bromo phenanthrene as the high refractive index dopant required to form the GI profile. The copolymer based GI POF can provide an inexpensive premise network with long-term stability.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Polishuk, “Plastic optical fibers branch out,” IEEE Commun. Mag. 44(9), 140–148 (2006).
    [CrossRef]
  2. Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer (Guildf.) 32(10), 1737–1745 (1991).
    [CrossRef]
  3. K. Makino, T. Nakamura, T. Ishigure, and Y. Koike, “Analysis of graded-index polymer optical fiber link performance under fiber bending,” J. Lightwave Technol. 23(6), 2062–2072 (2005).
    [CrossRef]
  4. K. Makino, T. Ishigure, and Y. Koike, “Waveguide parameter design of graded-index plastic optical fibers for bending-loss reduction,” J. Lightwave Technol. 24(5), 2108–2114 (2006).
    [CrossRef]
  5. P. J. Decker, A. Polley, J. H. Kim, and S. E. Ralph, “Statistical study of graded-index perfluorinated plastic optical fiber,” J. Lightwave Technol. 29(3), 305–315 (2011).
    [CrossRef]
  6. Y. Koike and K. Koike, “Polymer optical fibers,” in Encyclopedia of Polymer Science and Technology, (John Wiley & Sons, Inc., 2002).
  7. Y. Koike and S. Takahashi, “Plastic optical fibers: Technologies and communication links,” in Optical Fiber Telecommunications V A, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic Press, 2008).
  8. R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
    [CrossRef]
  9. T. Kibler, S. Poferl, G. Bock, H. P. Huber, and E. Zeeb, “Optical data buses for automotive applications,” J. Lightwave Technol. 22(9), 2184–2199 (2004).
    [CrossRef]
  10. W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189(12), 2861–2874 (1988).
    [CrossRef]
  11. J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
    [CrossRef]
  12. K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.) 51(6), 1377–1385 (2010).
    [CrossRef]
  13. R. Nakao, A. Kondo, and Y. Koike, “Fabrication of high glass transition temperature graded-index plastic optical fiber: Part 2–fiber fabrication and characterizations,” J. Lightwave Technol. 30(7), 969–973 (2012).
    [CrossRef]
  14. International Electrotechnical Commission, “Optical fibres - part 2-40: Product specifications - sectional specification for category a4 multimode fibres,” in IEC 60793–2-40 Ed. 2.0, (2005).
  15. T. Ishigure, M. Sato, A. Kondo, Y. Tsukimori, and Y. Koike, “Graded-index polymer optical fiber with high temperature and high humidity stability,” J. Lightwave Technol. 20(10), 1818–1825 (2002).
    [CrossRef]

2012 (1)

2011 (1)

2010 (2)

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.) 51(6), 1377–1385 (2010).
[CrossRef]

2006 (2)

2005 (1)

2004 (1)

2002 (1)

2001 (1)

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[CrossRef]

1991 (1)

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer (Guildf.) 32(10), 1737–1745 (1991).
[CrossRef]

1988 (1)

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189(12), 2861–2874 (1988).
[CrossRef]

Arrue, J.

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[CrossRef]

Bellec, M.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Bock, G.

Cardenas, D.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Charbonnier, B.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Decker, P. J.

Evanno, N.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Gaudino, R.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Groh, W.

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189(12), 2861–2874 (1988).
[CrossRef]

Guignard, P.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Huber, H. P.

Ishigure, T.

Jager, D.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Kado, T.

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.) 51(6), 1377–1385 (2010).
[CrossRef]

Kibler, T.

Kim, J. H.

Koike, K.

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.) 51(6), 1377–1385 (2010).
[CrossRef]

Koike, Y.

Kondo, A.

Makino, K.

Meyer, S.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Mollers, I.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Nakamura, T.

Nakao, R.

Okamoto, Y.

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.) 51(6), 1377–1385 (2010).
[CrossRef]

Pizzinat, A.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

Poferl, S.

Polishuk, P.

P. Polishuk, “Plastic optical fibers branch out,” IEEE Commun. Mag. 44(9), 140–148 (2006).
[CrossRef]

Polley, A.

Ralph, S. E.

Sato, M.

Satoh, Z.

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.) 51(6), 1377–1385 (2010).
[CrossRef]

Tsukimori, Y.

Zeeb, E.

Zubia, J.

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[CrossRef]

IEEE Commun. Mag. (2)

P. Polishuk, “Plastic optical fibers branch out,” IEEE Commun. Mag. 44(9), 140–148 (2006).
[CrossRef]

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions?” IEEE Commun. Mag. 48(2), 39–47 (2010).
[CrossRef]

J. Lightwave Technol. (6)

Makromol. Chem. (1)

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189(12), 2861–2874 (1988).
[CrossRef]

Opt. Fiber Technol. (1)

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[CrossRef]

Polymer (Guildf.) (2)

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.) 51(6), 1377–1385 (2010).
[CrossRef]

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer (Guildf.) 32(10), 1737–1745 (1991).
[CrossRef]

Other (3)

Y. Koike and K. Koike, “Polymer optical fibers,” in Encyclopedia of Polymer Science and Technology, (John Wiley & Sons, Inc., 2002).

Y. Koike and S. Takahashi, “Plastic optical fibers: Technologies and communication links,” in Optical Fiber Telecommunications V A, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic Press, 2008).

International Electrotechnical Commission, “Optical fibres - part 2-40: Product specifications - sectional specification for category a4 multimode fibres,” in IEC 60793–2-40 Ed. 2.0, (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission loss spectra of PMMA and MMA-co-PFPMA based GI POFs.

Fig. 2
Fig. 2

Loss increment under damp heat conditions (75°C, 85% RH).

Fig. 3
Fig. 3

Water absorption of bulk core polymers in water bath at 75°C.

Fig. 4
Fig. 4

(a) Refractive index and (b) Tg dependence on dopant concentration of MMA-co-PFPMA.

Fig. 5
Fig. 5

Attenuation stability of MMA-co-PFPMA based GI POF doped with BPT under damp heat conditions (75°C, 85% RH).

Metrics