Abstract

Fluorescence behavior was examined for fluorophore-labeled protein (BSA-AF) adsorbed on the nanopore surface of a nanoporous waveguiding film. The waveguiding film has a bilayer structure of a porous anodic alumina (PAA) layer on a metallic aluminum (Al) layer, and this structure allows efficient interaction of fluorophores entrapped in the nanoporous waveguiding film with a hotspot of the enhanced electromagnetic field of the waveguide modes. Fluorescence response of BSA-AF depends on the enhanced field within the waveguiding film and the enlarged adsorbed amount in the PAA layer where most of the light is confined. Enhancement of the field in the waveguiding film can be controlled by the refractive index of the PAA layer and enlargement of the pore size efficiently affects the enhancement of the fluorescence response. Compared to the film without a PAA layer, the PAA/Al film exhibits more than 140-fold larger fluorescence response due to the large adsorption capacity of the PAA nanopores and the enhanced field formed by the waveguide modes in the PAA layer with a low refractive index.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
    [CrossRef]
  2. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
    [CrossRef] [PubMed]
  3. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
    [CrossRef]
  4. F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
    [CrossRef]
  5. J. Zhang and J. R. Lakowicz, “Metal-enhanced fluorescence of an organic fluorophore using gold particles,” Opt. Express15(5), 2598–2606 (2007).
    [CrossRef] [PubMed]
  6. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
    [CrossRef] [PubMed]
  7. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
    [CrossRef] [PubMed]
  8. Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc.132(16), 5540–5541 (2010).
    [CrossRef] [PubMed]
  9. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express12(16), 3673–3685 (2004).
    [CrossRef] [PubMed]
  10. S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005).
    [CrossRef] [PubMed]
  11. S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008).
    [CrossRef] [PubMed]
  12. J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
    [CrossRef] [PubMed]
  13. P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
    [CrossRef]
  14. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H. C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express14(22), 10825–10830 (2006).
    [CrossRef] [PubMed]
  15. Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
    [CrossRef]
  16. N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surface,” J. Appl. Phys.103(8), 083104 (2008).
    [CrossRef]
  17. A. Minardo, R. Bernini, F. Mottola, and L. Zeni, “Optimization of metal-clad waveguides for sensitive fluorescence detection,” Opt. Express14(8), 3512–3527 (2006).
    [CrossRef] [PubMed]
  18. N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express16(26), 21626–21640 (2008).
    [CrossRef] [PubMed]
  19. C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
    [CrossRef] [PubMed]
  20. W. N. Hansen, “Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium,” J. Opt. Soc. Am.58(3), 380–390 (1968).
    [CrossRef]
  21. S. Fukuzaki, H. Urano, and K. Nagata, “Adsorption of bovine serum albumin onto metal oxide surfaces,” J. Ferment. Bioeng.81(2), 163–167 (1996).
    [CrossRef]
  22. A. Yamaguchi, K. Hotta, and N. Teramae, “Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film,” Anal. Chem.81(1), 105–111 (2009).
    [CrossRef] [PubMed]
  23. K. Hotta, A. Yamaguchi, and N. Teramae, “Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film,” Anal. Chem.82(14), 6066–6073 (2010).
    [CrossRef] [PubMed]
  24. K. Hotta, A. Yamaguchi, and N. Teramae, “Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing,” ACS Nano6(2), 1541–1547 (2012).
  25. P. G. Squire, P. Moser, and C. T. O’Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry7(12), 4261–4272 (1968).
    [CrossRef] [PubMed]
  26. S. J. McClellan and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids Surf. B Biointerfaces28(1), 63–75 (2003).
    [CrossRef]
  27. N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
    [CrossRef]
  28. T. D. Lazzara, K. H. A. Lau, and W. Knoll, “Mounted nanoporous anodic alumina thin films as planar optical waveguides,” J. Nanosci. Nanotechnol.10(7), 4293–4299 (2010).
    [CrossRef] [PubMed]
  29. K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004).
    [CrossRef]

2012

K. Hotta, A. Yamaguchi, and N. Teramae, “Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing,” ACS Nano6(2), 1541–1547 (2012).

2011

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

2010

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

K. Hotta, A. Yamaguchi, and N. Teramae, “Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film,” Anal. Chem.82(14), 6066–6073 (2010).
[CrossRef] [PubMed]

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc.132(16), 5540–5541 (2010).
[CrossRef] [PubMed]

T. D. Lazzara, K. H. A. Lau, and W. Knoll, “Mounted nanoporous anodic alumina thin films as planar optical waveguides,” J. Nanosci. Nanotechnol.10(7), 4293–4299 (2010).
[CrossRef] [PubMed]

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

2009

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

A. Yamaguchi, K. Hotta, and N. Teramae, “Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film,” Anal. Chem.81(1), 105–111 (2009).
[CrossRef] [PubMed]

2008

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surface,” J. Appl. Phys.103(8), 083104 (2008).
[CrossRef]

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008).
[CrossRef] [PubMed]

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

2007

J. Zhang and J. R. Lakowicz, “Metal-enhanced fluorescence of an organic fluorophore using gold particles,” Opt. Express15(5), 2598–2606 (2007).
[CrossRef] [PubMed]

F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
[CrossRef]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

2006

2005

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005).
[CrossRef] [PubMed]

2004

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express12(16), 3673–3685 (2004).
[CrossRef] [PubMed]

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004).
[CrossRef]

2003

S. J. McClellan and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids Surf. B Biointerfaces28(1), 63–75 (2003).
[CrossRef]

1998

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

1996

S. Fukuzaki, H. Urano, and K. Nagata, “Adsorption of bovine serum albumin onto metal oxide surfaces,” J. Ferment. Bioeng.81(2), 163–167 (1996).
[CrossRef]

1968

P. G. Squire, P. Moser, and C. T. O’Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry7(12), 4261–4272 (1968).
[CrossRef] [PubMed]

W. N. Hansen, “Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium,” J. Opt. Soc. Am.58(3), 380–390 (1968).
[CrossRef]

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express12(16), 3673–3685 (2004).
[CrossRef] [PubMed]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

Bernini, R.

Block, I. D.

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
[CrossRef]

Chen, Q.-D.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

Chen, Y.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

Chen, Z.

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

Chow, E.

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Colas des Francs, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Corn, R. M.

S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005).
[CrossRef] [PubMed]

Cunningham, B. T.

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surface,” J. Appl. Phys.103(8), 083104 (2008).
[CrossRef]

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

Davis, C. C.

Dereux, A.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

Dostalek, J.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

Fang, S.

S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005).
[CrossRef] [PubMed]

Fort, E.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Franses, E. I.

S. J. McClellan and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids Surf. B Biointerfaces28(1), 63–75 (2003).
[CrossRef]

Fu, Y.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc.132(16), 5540–5541 (2010).
[CrossRef] [PubMed]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Fukuzaki, S.

S. Fukuzaki, H. Urano, and K. Nagata, “Adsorption of bovine serum albumin onto metal oxide surfaces,” J. Ferment. Bioeng.81(2), 163–167 (1996).
[CrossRef]

Ganesh, N.

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surface,” J. Appl. Phys.103(8), 083104 (2008).
[CrossRef]

Gao, B.-R.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

Gaul, F.

F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
[CrossRef]

Ginger, D. S.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Grésillon, S.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Guo, P.-F.

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

Guo, S.-H.

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Hansen, W. N.

Hao, Y.-

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

Heetderks, J. J.

Heinis, D.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

Hoogenboom, J. P.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

Horvath, R.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

Hotta, K.

K. Hotta, A. Yamaguchi, and N. Teramae, “Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing,” ACS Nano6(2), 1541–1547 (2012).

K. Hotta, A. Yamaguchi, and N. Teramae, “Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film,” Anal. Chem.82(14), 6066–6073 (2010).
[CrossRef] [PubMed]

A. Yamaguchi, K. Hotta, and N. Teramae, “Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film,” Anal. Chem.81(1), 105–111 (2009).
[CrossRef] [PubMed]

Huang, C. J.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

Hung, Y.-J.

Jiang, Y.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

Jin, Y.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Kan, H.-C.

Kim, H. M.

S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005).
[CrossRef] [PubMed]

Knoll, W.

T. D. Lazzara, K. H. A. Lau, and W. Knoll, “Mounted nanoporous anodic alumina thin films as planar optical waveguides,” J. Nanosci. Nanotechnol.10(7), 4293–4299 (2010).
[CrossRef] [PubMed]

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004).
[CrossRef]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
[CrossRef]

Lakowicz, J. R.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc.132(16), 5540–5541 (2010).
[CrossRef] [PubMed]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

J. Zhang and J. R. Lakowicz, “Metal-enhanced fluorescence of an organic fluorophore using gold particles,” Opt. Express15(5), 2598–2606 (2007).
[CrossRef] [PubMed]

Lau, K. H. A.

T. D. Lazzara, K. H. A. Lau, and W. Knoll, “Mounted nanoporous anodic alumina thin films as planar optical waveguides,” J. Nanosci. Nanotechnol.10(7), 4293–4299 (2010).
[CrossRef] [PubMed]

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004).
[CrossRef]

Lazzara, T. D.

T. D. Lazzara, K. H. A. Lau, and W. Knoll, “Mounted nanoporous anodic alumina thin films as planar optical waveguides,” J. Nanosci. Nanotechnol.10(7), 4293–4299 (2010).
[CrossRef] [PubMed]

Lee, H. J.

S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005).
[CrossRef] [PubMed]

Legay, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

Lu, J.

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

Malyarchuk, V.

Mathias, P. C.

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surface,” J. Appl. Phys.103(8), 083104 (2008).
[CrossRef]

McClellan, S. J.

S. J. McClellan and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids Surf. B Biointerfaces28(1), 63–75 (2003).
[CrossRef]

Minardo, A.

Moser, P.

P. G. Squire, P. Moser, and C. T. O’Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry7(12), 4261–4272 (1968).
[CrossRef] [PubMed]

Mottola, F.

Munechika, K.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

Nagata, K.

S. Fukuzaki, H. Urano, and K. Nagata, “Adsorption of bovine serum albumin onto metal oxide surfaces,” J. Ferment. Bioeng.81(2), 163–167 (1996).
[CrossRef]

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

O’Konski, C. T.

P. G. Squire, P. Moser, and C. T. O’Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry7(12), 4261–4272 (1968).
[CrossRef] [PubMed]

Pedersen, H. C.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

Phaneuf, R. J.

Pomozzi, A.

F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
[CrossRef]

Ray, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Ren, Q.-J.

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

Sanchez-Mosteiro, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

Sander, M. S.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004).
[CrossRef]

Skivesen, N.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

Smolyaninov, I. I.

Squire, P. G.

P. G. Squire, P. Moser, and C. T. O’Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry7(12), 4261–4272 (1968).
[CrossRef] [PubMed]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
[CrossRef]

Sun, H.-B.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Tamada, K.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004).
[CrossRef]

Tan, L. S.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004).
[CrossRef]

Teramae, N.

K. Hotta, A. Yamaguchi, and N. Teramae, “Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing,” ACS Nano6(2), 1541–1547 (2012).

K. Hotta, A. Yamaguchi, and N. Teramae, “Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film,” Anal. Chem.82(14), 6066–6073 (2010).
[CrossRef] [PubMed]

A. Yamaguchi, K. Hotta, and N. Teramae, “Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film,” Anal. Chem.81(1), 105–111 (2009).
[CrossRef] [PubMed]

Urano, H.

S. Fukuzaki, H. Urano, and K. Nagata, “Adsorption of bovine serum albumin onto metal oxide surfaces,” J. Ferment. Bioeng.81(2), 163–167 (1996).
[CrossRef]

van Hulst, N. F.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
[CrossRef]

Wang, H.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

Wang, H.-Y.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

Wark, A. W.

S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005).
[CrossRef] [PubMed]

Wedge, S.

Wu, H. C.

Wu, S.

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

Xiao, S.-J.

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

Yamaguchi, A.

K. Hotta, A. Yamaguchi, and N. Teramae, “Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing,” ACS Nano6(2), 1541–1547 (2012).

K. Hotta, A. Yamaguchi, and N. Teramae, “Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film,” Anal. Chem.82(14), 6066–6073 (2010).
[CrossRef] [PubMed]

A. Yamaguchi, K. Hotta, and N. Teramae, “Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film,” Anal. Chem.81(1), 105–111 (2009).
[CrossRef] [PubMed]

Zeni, L.

Zhang, J.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc.132(16), 5540–5541 (2010).
[CrossRef] [PubMed]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

J. Zhang and J. R. Lakowicz, “Metal-enhanced fluorescence of an organic fluorophore using gold particles,” Opt. Express15(5), 2598–2606 (2007).
[CrossRef] [PubMed]

Zhang, W.

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surface,” J. Appl. Phys.103(8), 083104 (2008).
[CrossRef]

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

Zhu, Y.-Y.

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

ACS Nano

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

K. Hotta, A. Yamaguchi, and N. Teramae, “Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing,” ACS Nano6(2), 1541–1547 (2012).

Anal. Chem.

S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005).
[CrossRef] [PubMed]

A. Yamaguchi, K. Hotta, and N. Teramae, “Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film,” Anal. Chem.81(1), 105–111 (2009).
[CrossRef] [PubMed]

K. Hotta, A. Yamaguchi, and N. Teramae, “Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film,” Anal. Chem.82(14), 6066–6073 (2010).
[CrossRef] [PubMed]

Analyst (Lond.)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Biochemistry

P. G. Squire, P. Moser, and C. T. O’Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry7(12), 4261–4272 (1968).
[CrossRef] [PubMed]

Biosens. Bioelectron.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

Colloids Surf. B Biointerfaces

S. J. McClellan and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids Surf. B Biointerfaces28(1), 63–75 (2003).
[CrossRef]

J. Am. Chem. Soc.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc.132(16), 5540–5541 (2010).
[CrossRef] [PubMed]

J. Appl. Phys.

N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surface,” J. Appl. Phys.103(8), 083104 (2008).
[CrossRef]

J. Ferment. Bioeng.

S. Fukuzaki, H. Urano, and K. Nagata, “Adsorption of bovine serum albumin onto metal oxide surfaces,” J. Ferment. Bioeng.81(2), 163–167 (1996).
[CrossRef]

J. Mod. Opt.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

J. Nanosci. Nanotechnol.

T. D. Lazzara, K. H. A. Lau, and W. Knoll, “Mounted nanoporous anodic alumina thin films as planar optical waveguides,” J. Nanosci. Nanotechnol.10(7), 4293–4299 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Phys. Chem. B

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004).
[CrossRef]

J. Phys. Chem. C

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011).
[CrossRef]

J. Phys. Chem. Lett.

P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010).
[CrossRef]

J. Phys. D Appl. Phys.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Nano Lett.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009).
[CrossRef] [PubMed]

New J. Phys.

F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007).
[CrossRef]

Opt. Express

Sens. Actuators B Chem.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical SEM images of the PAA/Al film: (a) top and (b) cross section. Each scale bar corresponds to 200 nm.

Fig. 2
Fig. 2

Schematic illustration for the fluorescence detection based on the NPWG (PAA/Al) film.

Fig. 3
Fig. 3

Typical reflection (lines with colored squares) and fluorescence (solid lines without marks) spectra of the PAA/Al film measured before (blue lines) and after (red lines) adsorption of 100 nM BSA-AF. Spectra of the PAA/Al film are also shown after rinsing (black lines) with a buffer solution (5 mM phosphate buffer, pH = 4.6). For comparison the reflectivity (green line with squares) and fluorescence (green solid line) are also shown for bare glass for total internal reflection (TIR) after BSA-AF adsorption.

Fig. 4
Fig. 4

(a) Distributions of the electromagnetic field in the PAA/Al film calculated for different RIs of the PAA layer. (b) Field enhancement factor averaged through the PAA layer calculated as a function of RI of the PAA layer. The thickness of the Al layer was set as 10 nm for both the TE and TM modes. The RIs were 1.34, 1.00 + 5.90i and 1.52 for the buffer solution, Al layer and BK7 prism, respectively.

Fig. 5
Fig. 5

(a) Top and cross-sectional SEM images of the three PAA/Al films used in the fluorescence measurements. (b) (c) Angular reflection (dotted lines) and fluorescence spectra (solid lines) measured for adsorption of BSA-AF onto the three PAA/Al films shown in (a). Scale bars in (a) correspond to 200 nm.

Tables (2)

Tables Icon

Table 1 Parameters of the PAA Layer in the Films Shown in Fig. 5(c).

Tables Icon

Table 2 FOM and the Values Used to Obtain FOM Values (n = 3)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FOM = F peak q BSA-AF × cos θ peak
n PAA 2 = n al 2 (1- f pore ) + n pore 2 f pore
n PAA 2 = n al 2 + n al 2 f pore ( n pore 2 - n al 2 )β n al 2 - 1/2 f pore ( n pore 2 - n al 2 )β
β = 2 n pore 2 / n al 2 + 1

Metrics