Abstract

We propose and numerically demonstrate a cascade pulsing mechanism in a CW-pumped Er3+:ZBLAN all-fiber laser system. In the design, the laser was pumped at 980 nm and passively Q-switched at 1.6 μm. The Q-switched resonance reduced the population on 4I13/2 of the erbium gain fiber, thereby creating a population inversion between the levels of 4I11/2 and 4I13/2, and instantly inducing an intense gain-switched pulse at 2.7 μm. Sequential 2.7-μm single-mode pulsing with a pulse energy of 170 μJ and a peak power of 6 kW was achieved with an absorbed pump power of 0.65 W.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare-earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
    [CrossRef]
  2. M. Pollnan and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
    [CrossRef]
  3. R. S. Quimby and W. J. Miniscalco, “Continuous-wave lasing on a self-terminating transition,” Appl. Opt. 28(1), 14–16 (1989).
    [CrossRef] [PubMed]
  4. S. Bedö, M. Pollnau, W. Lüthy, and H. P. Weber, “Saturation of the 2.71 μm laser output in erbium doped ZBLAN fibers,” Opt. Commun. 116(1-3), 81–86 (1995).
    [CrossRef]
  5. J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+ /Pr3+ -doped fluoride glass fibers and application to lasing at 2.7 μm,” Electron. Lett. 27(5), 445–447 (1991).
    [CrossRef]
  6. S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
    [CrossRef] [PubMed]
  7. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
    [CrossRef] [PubMed]
  8. S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
    [CrossRef]
  9. C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
    [CrossRef]
  10. D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
    [CrossRef]
  11. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
    [CrossRef] [PubMed]
  12. C. Frerichs and U. B. Unrau, “Passive Q-Switching and mode-Locking of erbium-doped fluoride fiber lasers at 2.7 μm,” Opt. Fiber Technol. 2(4), 358–366 (1996).
    [CrossRef]
  13. N. J. C. Libatique, J. D. Tafoya, and R. K. Jain, “A compact diode-pumped passively Q-switched mid-IR fiber laser,” in Advanced Solid State Lasers, Vol. 34 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 417–419.
  14. B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun. 191(3-6), 315–321 (2001).
    [CrossRef]
  15. M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
    [CrossRef] [PubMed]
  16. T.-Y. Tsai, Y.-C. Fang, and S.-H. Hung, “Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers,” Opt. Express 18(10), 10049–10054 (2010).
    [CrossRef] [PubMed]
  17. A. S. Kurkov, Ya. E. Sadovnikova, A. V. Marakulin, and E. M. Sholokhov, “All fiber Er-Tm Q-switched laser,” Laser Phys. Lett. 7(11), 795–797 (2010).
    [CrossRef]
  18. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (CRC Press, 2001).
  19. F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er at 2.7 μm in a ZrF -based fluoride glass,” Electron. Lett. 24(15), 909–910 (1988).
    [CrossRef]
  20. V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μm Er lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
    [CrossRef]
  21. N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett. 36(9), 791–792 (2000).
    [CrossRef]
  22. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
    [CrossRef] [PubMed]
  23. M. Bernier, D. Faucher, N. Caron, and R. Vallée, “Highly stable and efficient erbium-doped 2.8 microm all fiber laser,” Opt. Express 17(19), 16941–16946 (2009).
    [CrossRef] [PubMed]
  24. A. Siegman, Lasers (University Science Books 1986), pp. 1024–1028.

2011 (4)

2010 (2)

T.-Y. Tsai, Y.-C. Fang, and S.-H. Hung, “Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers,” Opt. Express 18(10), 10049–10054 (2010).
[CrossRef] [PubMed]

A. S. Kurkov, Ya. E. Sadovnikova, A. V. Marakulin, and E. M. Sholokhov, “All fiber Er-Tm Q-switched laser,” Laser Phys. Lett. 7(11), 795–797 (2010).
[CrossRef]

2009 (1)

2007 (1)

2004 (1)

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[CrossRef]

2001 (2)

M. Pollnan and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
[CrossRef]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun. 191(3-6), 315–321 (2001).
[CrossRef]

2000 (1)

N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett. 36(9), 791–792 (2000).
[CrossRef]

1999 (1)

1996 (1)

C. Frerichs and U. B. Unrau, “Passive Q-Switching and mode-Locking of erbium-doped fluoride fiber lasers at 2.7 μm,” Opt. Fiber Technol. 2(4), 358–366 (1996).
[CrossRef]

1995 (1)

S. Bedö, M. Pollnau, W. Lüthy, and H. P. Weber, “Saturation of the 2.71 μm laser output in erbium doped ZBLAN fibers,” Opt. Commun. 116(1-3), 81–86 (1995).
[CrossRef]

1994 (1)

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
[CrossRef]

1993 (1)

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μm Er lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[CrossRef]

1992 (1)

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare-earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

1991 (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+ /Pr3+ -doped fluoride glass fibers and application to lasing at 2.7 μm,” Electron. Lett. 27(5), 445–447 (1991).
[CrossRef]

1989 (1)

1988 (1)

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er at 2.7 μm in a ZrF -based fluoride glass,” Electron. Lett. 24(15), 909–910 (1988).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+ /Pr3+ -doped fluoride glass fibers and application to lasing at 2.7 μm,” Electron. Lett. 27(5), 445–447 (1991).
[CrossRef]

Androz, G.

Auzel, F.

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er at 2.7 μm in a ZrF -based fluoride glass,” Electron. Lett. 24(15), 909–910 (1988).
[CrossRef]

Bedö, S.

S. Bedö, M. Pollnau, W. Lüthy, and H. P. Weber, “Saturation of the 2.71 μm laser output in erbium doped ZBLAN fibers,” Opt. Commun. 116(1-3), 81–86 (1995).
[CrossRef]

Bernier, M.

Cable, A.

N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett. 36(9), 791–792 (2000).
[CrossRef]

Caron, N.

Chin, S. L.

Coleman, D. J.

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[CrossRef]

Copic, M.

Dickinson, B. C.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun. 191(3-6), 315–321 (2001).
[CrossRef]

Fang, Y.-C.

Faucher, D.

Florea, V.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μm Er lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[CrossRef]

Frerichs, C.

C. Frerichs and U. B. Unrau, “Passive Q-Switching and mode-Locking of erbium-doped fluoride fiber lasers at 2.7 μm,” Opt. Fiber Technol. 2(4), 358–366 (1996).
[CrossRef]

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
[CrossRef]

Georgescu, S.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μm Er lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[CrossRef]

Golding, P. S.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun. 191(3-6), 315–321 (2001).
[CrossRef]

Gorjan, M.

Hashida, M.

Hung, S.-H.

Jackson, S. D.

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[CrossRef]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun. 191(3-6), 315–321 (2001).
[CrossRef]

M. Pollnan and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[CrossRef] [PubMed]

Jain, R. K.

N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett. 36(9), 791–792 (2000).
[CrossRef]

King, T. A.

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[CrossRef]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun. 191(3-6), 315–321 (2001).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[CrossRef] [PubMed]

Ko, D.-K.

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[CrossRef]

Kurkov, A. S.

A. S. Kurkov, Ya. E. Sadovnikova, A. V. Marakulin, and E. M. Sholokhov, “All fiber Er-Tm Q-switched laser,” Laser Phys. Lett. 7(11), 795–797 (2010).
[CrossRef]

Lee, J.

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[CrossRef]

Li, J.

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[CrossRef]

Libatique, N. J. C.

N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett. 36(9), 791–792 (2000).
[CrossRef]

Lupei, V.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μm Er lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[CrossRef]

Lüthy, W.

S. Bedö, M. Pollnau, W. Lüthy, and H. P. Weber, “Saturation of the 2.71 μm laser output in erbium doped ZBLAN fibers,” Opt. Commun. 116(1-3), 81–86 (1995).
[CrossRef]

Marakulin, A. V.

A. S. Kurkov, Ya. E. Sadovnikova, A. V. Marakulin, and E. M. Sholokhov, “All fiber Er-Tm Q-switched laser,” Laser Phys. Lett. 7(11), 795–797 (2010).
[CrossRef]

Marincek, M.

Meichenin, D.

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er at 2.7 μm in a ZrF -based fluoride glass,” Electron. Lett. 24(15), 909–910 (1988).
[CrossRef]

Miniscalco, W. J.

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+ /Pr3+ -doped fluoride glass fibers and application to lasing at 2.7 μm,” Electron. Lett. 27(5), 445–447 (1991).
[CrossRef]

Murakami, M.

Petkovšek, R.

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+ /Pr3+ -doped fluoride glass fibers and application to lasing at 2.7 μm,” Electron. Lett. 27(5), 445–447 (1991).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er at 2.7 μm in a ZrF -based fluoride glass,” Electron. Lett. 24(15), 909–910 (1988).
[CrossRef]

Pollnan, M.

M. Pollnan and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
[CrossRef]

Pollnau, M.

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[CrossRef]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun. 191(3-6), 315–321 (2001).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[CrossRef] [PubMed]

S. Bedö, M. Pollnau, W. Lüthy, and H. P. Weber, “Saturation of the 2.71 μm laser output in erbium doped ZBLAN fibers,” Opt. Commun. 116(1-3), 81–86 (1995).
[CrossRef]

Quimby, R. S.

Sadovnikova, Ya. E.

A. S. Kurkov, Ya. E. Sadovnikova, A. V. Marakulin, and E. M. Sholokhov, “All fiber Er-Tm Q-switched laser,” Laser Phys. Lett. 7(11), 795–797 (2010).
[CrossRef]

Sakabe, S.

Saliminia, A.

Sheng, Y.

Shimizu, S.

Sholokhov, E. M.

A. S. Kurkov, Ya. E. Sadovnikova, A. V. Marakulin, and E. M. Sholokhov, “All fiber Er-Tm Q-switched laser,” Laser Phys. Lett. 7(11), 795–797 (2010).
[CrossRef]

Tafoya, J.

N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett. 36(9), 791–792 (2000).
[CrossRef]

Tauermann, T.

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
[CrossRef]

Többen, H.

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare-earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

Tokita, S.

Tsai, T.-Y.

Unrau, U. B.

C. Frerichs and U. B. Unrau, “Passive Q-Switching and mode-Locking of erbium-doped fluoride fiber lasers at 2.7 μm,” Opt. Fiber Technol. 2(4), 358–366 (1996).
[CrossRef]

Vallée, R.

Viswanathan, N. K.

N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett. 36(9), 791–792 (2000).
[CrossRef]

Weber, H. P.

S. Bedö, M. Pollnau, W. Lüthy, and H. P. Weber, “Saturation of the 2.71 μm laser output in erbium doped ZBLAN fibers,” Opt. Commun. 116(1-3), 81–86 (1995).
[CrossRef]

West, G. F.

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare-earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

Wetenkamp, L.

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare-earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (4)

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
[CrossRef]

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+ /Pr3+ -doped fluoride glass fibers and application to lasing at 2.7 μm,” Electron. Lett. 27(5), 445–447 (1991).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er at 2.7 μm in a ZrF -based fluoride glass,” Electron. Lett. 24(15), 909–910 (1988).
[CrossRef]

N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett. 36(9), 791–792 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μm Er lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[CrossRef]

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pollnan and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
[CrossRef]

J. Non-Cryst. Solids (1)

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare-earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

Laser Phys. Lett. (1)

A. S. Kurkov, Ya. E. Sadovnikova, A. V. Marakulin, and E. M. Sholokhov, “All fiber Er-Tm Q-switched laser,” Laser Phys. Lett. 7(11), 795–797 (2010).
[CrossRef]

Opt. Commun. (3)

S. Bedö, M. Pollnau, W. Lüthy, and H. P. Weber, “Saturation of the 2.71 μm laser output in erbium doped ZBLAN fibers,” Opt. Commun. 116(1-3), 81–86 (1995).
[CrossRef]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun. 191(3-6), 315–321 (2001).
[CrossRef]

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun. 236(4-6), 379–385 (2004).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

C. Frerichs and U. B. Unrau, “Passive Q-Switching and mode-Locking of erbium-doped fluoride fiber lasers at 2.7 μm,” Opt. Fiber Technol. 2(4), 358–366 (1996).
[CrossRef]

Opt. Lett. (5)

Other (3)

N. J. C. Libatique, J. D. Tafoya, and R. K. Jain, “A compact diode-pumped passively Q-switched mid-IR fiber laser,” in Advanced Solid State Lasers, Vol. 34 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 417–419.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (CRC Press, 2001).

A. Siegman, Lasers (University Science Books 1986), pp. 1024–1028.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic design of a passively Q-switching-induced gain-switched Er:ZBLAN all-fiber laser. The resonators of 2.7 and 1.6 μm are defined by the FBGs. The pulsing wavelengths of 2.7 and 1.6 μm are attributed to the energy transitions from 4I11/2 to 4I13/2 and from 4I13/2 to 4I15/2, respectively.

Fig. 2
Fig. 2

Correlations between the pulses and the level populations. The populations of Er3+, N2, N1 and N0 was normalised by the total amount of Er3+ dopants, the absorption population of Tm3+, Na was normalised by total number of Tm3+ atoms, and the Q-switched pulse and the QSIGS pulse was normalised by the maximum peak power. The inset shows their variations and correlations on a large scale.

Fig. 3
Fig. 3

Sequential passively Q-switched pulses and induced gain-switched pulses. (a). The QSIGS pulses at 2.7 μm had a stable peak power of 6 kW. Relaxation oscillation in self-terminating lasing between the QSIGS pulses is shown in inset (1). (b). The passively Q-switched pulses at 1.6 μm had a peak power of 1.2 kW. The relation between the spikes and the pulses of 2.7 and 1.6 μm is shown on smaller x and y scales in inset (2).

Fig. 4
Fig. 4

Pulsing characteristics versus the pump normalised by Ips. (a). The pulse repetition rate and the pulse energies of the 1.6- and 2.7-μm pulses versus Ip/Ips. (b). The peak powers of 1.6 and 2.7 μm versus the normalized pump.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r md = M dG M dQ 1 1+ g 10 A g1 σ 12 A g2 σ 10 ,
d N 2 dt = N 2 τ 2 + σ 02 I p h v p ( N 0 g 02 N 2 ) K gs n 2 N gs ,
d N 1 dt = N 2 τ 21 N 1 τ 10 K g n 1 N g + K gs n 2 N gs ,
d N a dt = N aT N a τ a2 ( 1+ g a,12 ) K a n 1 N a ,
d n 1 dt =( K g N g K a N a α d1 α m2 )× n 1 ,
d n 2 dt =( K gs N gs α d2 α m2 )× n 2 ,

Metrics