Abstract

We have rationally designed two-dimensional Au and Ag hole arrays for high performing surface plasmon resonance (SPR) sensing. The figure-of-merit (FOM), which is defined as sensitivity/linewidth, is found to be highly geometry-dependent. For sensitivity, we find it is equal to the period of array when exciting low order surface plasmon modes at low incident angle. Therefore, increasing period improves sensitivity. On the other hand, narrow linewidth can be obtained from small hole size so that the radiative decay loss is minimized. By using a pair of orthogonally oriented polarizer and analyzer, the signal-to-noise ratio (SNR) can be greatly enhanced due to the elimination of the nonresonant reflection background. As a proof of our strategy, we have obtained FOM larger than 100/RIU and SNR higher than 110 from Au arrays. Our results show the importance of understanding the basic properties of surface plasmon polaritons in order to systematically optimize the performance of the plasmonic system for a given application.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. C. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier Science, 2008).
  3. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [CrossRef]
  5. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [CrossRef]
  6. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).
  7. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  8. M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
    [CrossRef] [PubMed]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  10. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  11. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
    [CrossRef] [PubMed]
  12. J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
    [CrossRef]
  13. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
    [CrossRef]
  14. D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4(1), 432–438 (2010).
    [CrossRef] [PubMed]
  15. J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
    [CrossRef]
  16. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  18. J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94(3), 033101 (2009).
    [CrossRef]
  19. S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
    [CrossRef]
  20. M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
    [CrossRef]
  21. E. Hecht, Optics, 4th ed. (Addison Wesley, San Fransisco, C.A., 2001).

2011 (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

2010 (3)

M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[CrossRef] [PubMed]

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4(1), 432–438 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

2009 (3)

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94(3), 033101 (2009).
[CrossRef]

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

2008 (6)

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Billaudeau, C.

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Collin, S.

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

de Dood, M. J. A.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Driessen, E. F. C.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fainman, Y.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Fernández-Domínguez, A. I.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4(1), 432–438 (2010).
[CrossRef] [PubMed]

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Gordon, R.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Ho, H. P.

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Hwang, G. M.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Iu, H.

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94(3), 033101 (2009).
[CrossRef]

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Juste, J. P.

M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Lalanne, P.

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

Lechuga, L. M.

M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[CrossRef] [PubMed]

Lei, D. Y.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4(1), 432–438 (2010).
[CrossRef] [PubMed]

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

Li, J.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4(1), 432–438 (2010).
[CrossRef] [PubMed]

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94(3), 033101 (2009).
[CrossRef]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Liz-Marzán, L. M.

M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[CrossRef] [PubMed]

Luk, W. C.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Maier, S. A.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4(1), 432–438 (2010).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ni, W. H.

M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ong, H. C.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4(1), 432–438 (2010).
[CrossRef] [PubMed]

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94(3), 033101 (2009).
[CrossRef]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Otte, M. A.

M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[CrossRef] [PubMed]

Pang, L.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Pardo, F.

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

Pelouard, J. L.

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Rodier, J. C.

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Sauvan, C.

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Sepúlveda, B.

M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Slutsky, B.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Stolwijk, D.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

van Exter, M. P.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Wan, J. T. K.

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94(3), 033101 (2009).
[CrossRef]

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

Waye, M. Y.

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Xu, J. B.

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

ACS Nano (2)

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4(1), 432–438 (2010).
[CrossRef] [PubMed]

M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94(18), 183112 (2009).
[CrossRef]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008).
[CrossRef]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94(3), 033101 (2009).
[CrossRef]

Chem. Rev. (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Phys. Rev. B (2)

S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009).
[CrossRef]

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

Other (4)

E. Hecht, Optics, 4th ed. (Addison Wesley, San Fransisco, C.A., 2001).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

E. C. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier Science, 2008).

J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The plots of numerically calculated sensitivity of different orders (nx, ny) of SPP modes against incident angle for 2D arrays with different periods (p). The (-1,0) (closed symbols) and (1,0) (open symbols) SPP modes of (a) Au and (b) Ag arrays. The (-1,1) SPP modes of (c) Au and (d) Ag arrays.

Fig. 2
Fig. 2

(a) The schematic for angle- and polarization-resolved reflectivity spectroscopy. (b) Three polarization configurations. The p-p and s-s configurations have two polarization axes aligned parallel and normal to the incident plane. The o-o configuration has two axes oriented at 45o and -45o with respect to the incident plane. The dash lines are incident plane.

Fig. 3
Fig. 3

The angle-dependent reflectivity mappings of Au arrays with p = 760 nm, d = 60 nm, and different radii taken under different polarizations. (a) and (d) are p-p and s-s mappings for r = 65 nm. (b) and (e) are p-p and s-s mappings for r = 105 nm. (c) and (f) are p-p and s-s mappings for r = 205 nm. The red solid lines are calculated by using the SPP phase-matching equation, specifying different (nx, ny) SPP modes. The corresponding SEM images are shown in the insets.

Fig. 4
Fig. 4

The angle-dependent reflectivity mappings of Au arrays with p = 760 nm, d = 300 nm, and different radii taken under different polarizations. (a) and (d) are p-p and s-s mappings for r = 62 nm. (b) and (e) are p-p and s-s mappings for r = 110 nm. (c) and (f) are p-p and s-s mappings for r = 165 nm. The red solid lines are calculated by using the SPP phase-matching equation, specifying different (nx, ny) SPP modes. The corresponding SEM images are shown in the insets.

Fig. 5
Fig. 5

The corresponding p-p reflectivity spectra taken at θ = 5o and 15o for Au arrays with p = 760 nm, d = (a) 60 nm and (b) 300 nm, and different radii. The dash lines are the best fits determined by using Fano-like model.

Fig. 6
Fig. 6

The plots of (-1,0) SPP decay lifetime against resonant wavelength in log-log scale for (a) Au and (b) Ag arrays with different hole radii. The period and hole depth are 760 and 300 nm for Au and 670 and 380 nm for Ag, respectively. The slopes n deduced by linear fitting are also indicated.

Fig. 7
Fig. 7

The plots of SPP decay lifetime against hole radius at resonant wavelength = 900 nm in log-log scale for different hole depths. (a) Au arrays with p = 655 nm, (b) Ag arrays with p = 670 nm, and (c) Au arrays with p = 760 nm.

Fig. 8
Fig. 8

The angle-dependent o-o reflectivity mappings of Au arrays with p = 760 nm and different hole depths and radii. The upper panel is for d = 60 nm with r = (a) 65, (b) 105, and (c) 205 nm. The lower panel is for d = 300 nm with r = (d) 62, (e) 110, and (f) 165 nm. The white solid lines are calculated by using the SPP phase-matching equation, specifying different (nx, ny) SPP modes.

Fig. 9
Fig. 9

The corresponding o-o reflectivity spectra taken at θ = 5o and 15o for Au arrays with p = 760 nm, d = (a) 60 nm and (b) 300 nm and different radii. The dash lines are best fits determined by using Lorentzian model.

Fig. 10
Fig. 10

The plots of (-1,0) SPP decay lifetime against resonant wavelength in log-log scale for p = 655 nm Au arrays with different geometries. d = 60 nm, r = (a) 55 nm and (b) 150 nm, d = 120 nm, r = (c) 90 nm and (d) 145 nm, d = 300 nm, r = (e) 65 nm and (f) 120 nm, and d = 510nm, r = (g) 80 nm and (h) 125 nm.

Fig. 11
Fig. 11

The o-o reflectivity spectra of (1,0) SPP mode taken from two Au arrays with p = 760 nm, d = 70 nm, and (a) r = 35 and (b) 135 nm at θ = 5o in different refractive index media (na = 1, 1.33 and 1.37). The corresponding p-p reflectivity spectra are given in the insets for reference. (c) and (d) The corresponding plots of resonant wavelength against refractive index. The back solid squares are determined from o-o reflectivity spectra while the red solid circles are determined from p-p reflectivity spectra. The dash lines are linear fits. The sensitivity and FOM are determined to be 754.7 nm/RIU and 105.57/RIU for r = 35 nm and 751.18 nm/RIU and 91.05/RIU for r = 135 nm.

Tables (2)

Tables Icon

Table 1 The sensitivity, averaged linewidth, and FOM of (-1,0) and (1,0) SPPs from Au arrays with different radii. The period and hole depth are 655 and 70 nm.

Tables Icon

Table 2 The sensitivity, averaged linewidth, and FOM of (-1,0) and (1,0) SPPs from Au arrays with different radii. The period and hole depth are 760 and 70 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( 2π λ n a sinθ+ n x 2π p ) 2 + ( n y 2π p ) 2 = ( 2π λ n a 2 ε m n a 2 + ε m ) 2 ,
R pp ( ω )= | a+ b Γ rad e iδ ( ω ω res )+i Γ tot | 2
R oo ( ω )= 1 4 | b Γ rad e iδ ( ω ω res )+i Γ tot | 2
τ abs λRe ( ε m ) 2 2πIm( ε m ) λ 2 ,
σ=24 π 5 [ r 4 d 2 λ 4 ( ( n a 2 ε m ) ( n a 2 +2 ε m ) ) 2 5 π 4 r 20 3 d 10 3 λ 8 ( ( n a 2 2 ε m )( n a 2 ε m ) ( n a 2 +2 ε m ) 2 ) 2 ],

Metrics