Abstract

We report efficient low dispersion light coupling into a silicon waveguide using an antenna consisting of two metallic nanoparticles. We find that strong multiple scattering between the nanoparticles dictates the coupling efficiency. We also explore directional coupling, by using different particles with a relative scattering phase, but find that optimum directionality corresponds to minimum efficiency. A dipole model highlights a subtle interplay between multiple scattering and directionality leading to a compromise allowing up to 30% transmission into a single direction. With a 500nm bandwidth near infrared telecoms bands, group delay dispersion is sufficiently low to faithfully couple pulses as short as 50fs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
    [CrossRef] [PubMed]
  4. J. K. Butler, N.-H. Sun, G. A. Evans, L. Pang, and P. Congdon, “Grating-assisted coupling of light between semiconductor and glass waveguides,” J. Lightwave Technol. 16, 1038–1048 (1998).
    [CrossRef]
  5. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett. 26, 1102–1104 (2001).
    [CrossRef]
  6. C.-W. Liao, Y.-T. Yang, S.-W. Huang, and M.-C. Lee, “Fiber-core-matched three-dimensional adiabatic tapered couplers for integrated photonic devices,” J. Lightwave Technol. 29, 770–774 (2011).
    [CrossRef]
  7. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
    [CrossRef] [PubMed]
  8. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
    [CrossRef]
  9. A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
    [CrossRef]
  10. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
    [CrossRef] [PubMed]
  11. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef] [PubMed]
  12. J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express 19, 18155–18163 (2011).
    [CrossRef] [PubMed]
  13. J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
    [CrossRef] [PubMed]
  14. S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006).
    [CrossRef]
  15. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
    [CrossRef]
  16. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
    [CrossRef]
  17. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
    [CrossRef]
  18. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
    [CrossRef] [PubMed]
  19. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
    [CrossRef]
  20. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [CrossRef] [PubMed]

2011

2010

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[CrossRef] [PubMed]

2009

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

2008

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[CrossRef]

2006

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006).
[CrossRef]

2003

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
[CrossRef] [PubMed]

2001

1998

1991

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[CrossRef]

Afshinmanesh, F.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[CrossRef] [PubMed]

Albrektsen, O.

Bartal, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[CrossRef]

Bousseksou, A.

Bozhevolnyi, S. I.

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[CrossRef]

Brongersma, M. L.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef] [PubMed]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[CrossRef]

Butler, J. K.

Cai, W.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[CrossRef] [PubMed]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Colombelli, R.

Congdon, P.

Costantini, D.

Day, J. K.

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[CrossRef] [PubMed]

De Wilde, Y.

Du, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Evans, G. A.

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Forchel, A.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[CrossRef] [PubMed]

Gan, D.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

García-Vidal, F. J.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[CrossRef]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[CrossRef] [PubMed]

Ghoshal, A.

A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
[CrossRef]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Gosciniak, J.

Grady, N. K.

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[CrossRef] [PubMed]

Halas, N. J.

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[CrossRef] [PubMed]

Han, Z.

Happ, T. D.

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[CrossRef]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Huang, S.-W.

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Kamp, M.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[CrossRef] [PubMed]

Keshmiri, H.

Kik, P. G.

A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
[CrossRef]

Kim, P. S.

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Lee, G.

Lee, M.-C.

Leosson, K.

Lerosey, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Liao, C.-W.

Liu, J. S. Q.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef] [PubMed]

Luo, X.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006).
[CrossRef]

Martín-Moreno, L.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[CrossRef]

Matheu, P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Neumann, O.

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[CrossRef] [PubMed]

Nielsen, M. G.

Oh, C. H.

Pala, R. A.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef] [PubMed]

Pang, L.

Park, S.

Pile, D. F. P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Song, S. H.

Sonnefraud, Y.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Sun, N.-H.

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[CrossRef] [PubMed]

J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express 19, 18155–18163 (2011).
[CrossRef] [PubMed]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Volkov, V. S.

Wang, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Xu, T.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Yang, Y.-T.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[CrossRef] [PubMed]

Zhang, X.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Zhao, Y.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

ACS Nano

J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano 4, 7566–7572 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

J. Lightwave Technol.

Nano Lett.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Nat. Commun.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef] [PubMed]

Nat. Photon.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38, 257–267 (2006).
[CrossRef]

Phys. Rev. B

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[CrossRef]

Phys. Rev. Lett.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Phys. Status Solidi RRL

A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL 4, 280–282 (2010).
[CrossRef]

Proc. IEEE

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[CrossRef]

Science

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[CrossRef] [PubMed]

Small

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Other

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the plasmonic antenna. (b) Ex component of the TM waveguide mode at the particle position, normalised to total mode power vs. wavelength. (Insets show the mode’s power profile.) (c) Near field intensity of uncoupled particles for L = 150nm (solid), L = 250nm (dashed; inset shows field distribution 100nm above bulk silicon), and L = 350nm (dotted). (d) Transmission amplitude and phase into one direction of the waveguide for different particle lengths, excited by a 7μm beam, comparing numerically simulation (solid) and a forced dipole model (dotted line).

Fig. 2
Fig. 2

Transmission into each direction of the waveguide from two particles excited by a Gaussian beam focussed to a 7μm spot. (a) and (b) show the dependence of transmission on the propagation phase ψ, between two particles for Δ = 0 and Δ = π/4, respectively. The plots compare numerical simulations (open symbols) and the coupled oscillator model with (solid line) and without multiple scattering (dashed line).

Fig. 3
Fig. 3

(a) Maximum transmission (Tmax) into left and right directions (open circles and open squares, respectively) vs. phase difference between the two particles for numerical calculations (open symbols) and coupled oscillator model with (solid lines) and without multiple scattering (dashed line). (b) Transmission spectra into one direction for a 2μm focus for two particles with a Δ = π/4 phase shift (solid line; L1 = 250nm, L2 = 160nm), an identical particle pair (dotted line; L1 = L2 = 250nm), and a single particle (dashed line).

Fig. 4
Fig. 4

(a) Plasmonic coupler group delay dispersion over transmission window. (b) Pulse broadening due to 4μm propagating along silicon waveguide without coupler (solid), for a particle pair with Δ = π/4 (dashed line), and an identical particle pair (dotted line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t ( x ) = κ 1 a ˙ 1 e i k | x | + κ 2 a ˙ 2 e i k | x D | = t ± e i k x ,
t ± = s 1 ( κ 1 κ 2 e ± i ψ ) T ( α 1 κ 1 e i ϕ 1 α 1 α 2 β 1 γ ¯ 1 e i ( ϕ 1 + ϕ 2 ψ ) κ 1 α 1 α 2 β 2 γ ¯ 1 e i ( ϕ 1 + ϕ 2 ψ ) κ 2 α 2 κ 2 e i ϕ 2 ) ( c 1 c 2 )
T ± = T 1 + T 2 + 2 T 1 T 2 cos ( Δ ± ψ )
ψ + Δ = 2 n π ψ Δ = ( 2 m + 1 ) π
T = 2 T 1 + 2 T 2 + 4 T 1 T 2 cos ψ cos Δ

Metrics