Abstract

In vivo high resolution imaging of biological tissues is desirable for a wide range of biomedical applications. Recently focal modulation microscopy (FMM) has been developed and an imaging depth comparable to multi-photon microscopy (MPM) and optical coherence microscopy (OCM) has been achieved. Here we report the first focal modulation microscope that is capable of performing real-time fluorescence and scattering imaging simultaneously on thick biological tissues. A novel spatiotemporal phase modulator (STPM) has been designed and integrated into such a microscope to achieve high performances in terms of imaging speed, contrast, effective spatial resolution, signal to noise ratio, and compatibility with multiple excitation wavelengths.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
    [CrossRef]
  2. U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
    [CrossRef]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning 16(3), 131–149 (1994).
    [PubMed]
  6. P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci. 124(17), 2877–2890 (2011).
    [CrossRef] [PubMed]
  7. I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
    [CrossRef] [PubMed]
  8. N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods 6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
    [CrossRef] [PubMed]
  9. S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol. 38(1), 1–10 (1998).
    [CrossRef] [PubMed]
  10. M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE 1660, 188–198 (1992).
    [CrossRef]
  11. C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
    [CrossRef] [PubMed]
  12. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
    [CrossRef]
  13. N. G. Chen, C. H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express 16(23), 18764–18769 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18764 .
    [CrossRef] [PubMed]
  14. S. P. Chong, C. H. Wong, C. J. R. Sheppard, and N. G. Chen, “Focal modulation microscopy: a theoretical study,” Opt. Lett. 35(11), 1804–1806 (2010).
    [CrossRef] [PubMed]
  15. G. J. Gao, S. P. Chong, C. J. R. Sheppard, and N. G. Chen, “Considerations of aperture configuration in focal modulation microscopy from the standpoint of modulation depth,” J. Opt. Soc. Am. A 28(4), 496–501 (2011).
    [CrossRef] [PubMed]
  16. S. P. Chong, C. H. Wong, K. F. Wong, C. J. R. Sheppard, and N. G. Chen, “High-speed focal modulation microscopy using acousto-optical modulators,” Biomed. Opt. Express 1(3), 1026–1037 (2010), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-3-1026 .
    [CrossRef] [PubMed]

2011 (2)

2010 (3)

2008 (1)

2007 (1)

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
[CrossRef] [PubMed]

2002 (1)

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

1998 (1)

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol. 38(1), 1–10 (1998).
[CrossRef] [PubMed]

1996 (1)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

1994 (1)

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning 16(3), 131–149 (1994).
[PubMed]

1993 (1)

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
[CrossRef]

1992 (1)

M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE 1660, 188–198 (1992).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ameer-Beg, S. M.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Anderson, K. I.

P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci. 124(17), 2877–2890 (2011).
[CrossRef] [PubMed]

Barber, P. R.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Bigelow, M. R.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
[CrossRef] [PubMed]

Boutet de Monvel, J.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Cavanagh, H. D.

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning 16(3), 131–149 (1994).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, N. G.

Chong, S. P.

Conejero, G.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods 6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Dirnagl, U.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
[CrossRef]

Einhaupl, K. M.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fridberger, A.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gao, G. J.

Gittinger, G.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
[CrossRef] [PubMed]

Granier, C.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods 6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, M.

M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE 1660, 188–198 (1992).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Hodgkiss, R. J.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Jester, J. V.

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning 16(3), 131–149 (1994).
[PubMed]

Khoshyomn, S.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol. 38(1), 1–10 (1998).
[CrossRef] [PubMed]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Le Calvez, S.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lindauer, U.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
[CrossRef]

Locke, R. J.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Maier, H.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Massonnet, C.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods 6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

McBride, W. J.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol. 38(1), 1–10 (1998).
[CrossRef] [PubMed]

McGhee, E. J.

P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci. 124(17), 2877–2890 (2011).
[CrossRef] [PubMed]

Miller, C. E.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
[CrossRef] [PubMed]

Newman, R. G.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Palauqui, J. C.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods 6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Penar, P. L.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol. 38(1), 1–10 (1998).
[CrossRef] [PubMed]

Petroll, W. M.

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning 16(3), 131–149 (1994).
[PubMed]

Pfister, W.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sedmera, D.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Taatjes, D. J.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol. 38(1), 1–10 (1998).
[CrossRef] [PubMed]

Them, A.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
[CrossRef]

Thompson, R. P.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
[CrossRef] [PubMed]

Timpson, P.

P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci. 124(17), 2877–2890 (2011).
[CrossRef] [PubMed]

Tomo, I.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Tozer, G. M.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Trusk, T. C.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
[CrossRef] [PubMed]

Ulfendahl, M.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Verdeil, J. L.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods 6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Villringer, A.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
[CrossRef]

Vojnovic, B.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Wang, H.-W.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

Wilson, J.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Wong, C. H.

Wong, K. F.

Wuyts, N.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods 6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996).
[CrossRef]

J. Cell Sci. (1)

P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci. 124(17), 2877–2890 (2011).
[CrossRef] [PubMed]

J. Neurooncol. (1)

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol. 38(1), 1–10 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Micron (1)

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron 24(6), 611–622 (1993).
[CrossRef]

Microsc. Microanal. (1)

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal. 11(03), 216–223 (2005).
[CrossRef] [PubMed]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Neuroimage (1)

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage 35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Plant Methods (1)

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods 6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Proc. SPIE (2)

M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE 1660, 188–198 (1992).
[CrossRef]

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE 4620, 85–95 (2002).
[CrossRef]

Scanning (1)

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning 16(3), 131–149 (1994).
[PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (1301 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics